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Recommended Books and Resources

There are many excellent textbooks on GR. The ones I am most familiar with are:

e Carroll, Spacetime and Geometry

Schutz, A First Course in Relativity

Hartle, An Introduction to Einstein’s General Relativity

Zee, Einstein Gravity in o Nutshell

Wald, General Relativity

Weinberg, Gravitation and Cosmology

Misner, Thorne and Wheeler, Gravitation

Useful mathematical background is given in
o Schutz, Geometrical Methods in Mathematical Physics

e Nakahara, Geometry, Topology and Physics

In addition, there are many fantastic lecture notes:
e Tong, General Relativity
e Reall, General Relativity
e Lim, General Relativity

o McGreevy, General Relativity

Finally, there are also many nice popular books on the subject. Here are a few:
e Thorne, Black Holes and Time Warps
e Ferreira, The Perfect Theory
e Will and Yunes, Is Einstein Still Right?

e Isaacson, Finstein: His Life and Universe

These notes are based mostly on the book by Carroll and the lecture notes of Tong, Reall and
Lim. I am also following closely the structure of a previous version of this course taught by
Alejandra Castro. My notes were written in record speed, so please beware of typos.
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1 Gravity is Geometry

1.1 What’s Wrong With Newton?

Why do we need a better theory of gravity than Newton’s? At an observational level, it is
because Newtonian gravity fails at a certain level of accuracy; for example, for predicting the
orbit of Mercury. More conceptually, Newtonian gravity is in conflict with the fundamental
principle of special relativity that no signal should travel faster than light. We will start there.

Consider a particle of mass m in a gravitational field ®(x,t) (see Fig.1). The force it experi-
ences is given by F = —mV ®, where the gravitational field satisfies the Poisson equation

V20 = 47Gp. (1.1)

The Green’s function solution to the Poisson equation is

G/&’pXt (1.2)

X—X

which describes how a matter distribution with mass density p(x,t) creates the potential. Of
course, this reduces to the familiar potential ® = —GM/r for a localized spherically symme-
try mass density, p = Mop(r). The problem with this is that a change in p(x,t) propagates
instantaneously throughout space in obvious violation of relativity. A related problem is that
the Poisson equation is not a tensorial equation, so it depends on the reference frame. Lorentz
transformations mix up time and space coordinates. Hence, if we transform to another inertial
frame then the resulting equation would involve time derivatives. The above equation therefore
does not take the same form in every inertial frame. This is another way of seeing that Newtonian
gravity is incompatible with special relativity.

A similar issue arises in Coulomb’s law of electrostatics. In particular, the equation for the
electric potential ¢ takes a very similar form,

V=2 (1.3)
€0

where p(x,t) is the charge density. A change in the charge density would therefore also be expe-
rienced instantaneously throughout space. Of course, in the case of electrostatics, we know that

Fk//’m

Figure 1. In Newtonian gravity a change in a mass distribution p(x,t) results in an instantaneous change
in the force on an object, which violates relativity.



the resolution are the Maxwell equations of electrodynamics, which can be written in tensorial
form using the vector potential A* = (¢, A) and the vector current J* = (pe, Je):

B FM = Jh (1.4)

where F),,, = 0,A, — 0,A,. Our challenge will be to find the analog of Maxwell’s equations for
gravity.

1.2 The Equivalence Principle

The origin of general relativity lies in the following simple question: Why do objects with different
masses fall at the same rate? We think we know the answer: the mass of an object cancels in
Newton’s law

wa = pig, (1.5)

where g is the local gravitational acceleration. However, the meaning of ‘mass’ on the left-hand
side and the right-hand side of (1.5) is quite different. We should really distinguish between the
two masses by giving them different names:

mra = mgg. (1.6)

The gravitational mass, mg, is a source for the gravitational field (just like the charge ¢, is a
source for an electric field), while the inertial mass, my, characterizes the dynamical response
to any forces. In the case of the electric force, you wouldn’t be tempted to cancel g, and my. It
is therefore a nontrivial result that experiments find'
1410718, (1.7)
mag
In Newtonian gravity, this equality of inertial and gravitational mass has no explanation and
appears to be an accident. In GR, on the other hand, the observation that m; = m¢ is taken to
be a fundamental property of gravity called the weak equivalence principle (WEP).

There are two other forces which are also proportional to the inertial mass. These are

Centrifugal force : F=-mjwx (wxr). 13

Coriolis force : F=-"2mjwxr. (1.8)
In both of these cases, we understand that the forces are proportional to the inertial mass because
these are “fictitious forces” in a non-inertial frame. (In this case, one that is rotating with
frequency w). Could gravity also be a fictitious force, arising only because we are in a non-
inertial reference frame?

An important consequence of the equivalence principle is that gravity is “universal,” meaning
that it acts in the same way on all objects. Consider a particle in a gravitational field g. Using
the WEP, the equation of motion of the particle is

% = g(x(t),1). (1.9)

Note that (1.6) defines both m¢ and g. For any given material, we can therefore define mg = m; by the

rescaling g — g and mg — A" 'mg. What is nontrivial is that (1.7) then holds for other bodies made of other
materials.
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Figure 2. Illustration of Einstein’s famous thought experiment showing that a uniform gravitational
field (left) is indistinguishable from uniform acceleration (middle). This is to be contrasted with the case

of an electric field (right) which acts differently on opposite charges and hence cannot be mimicked by
acceleration.

Solutions of this equation are uniquely determined by the initial position and velocity of the
particle. Any two particles with the same initial position and velocity will follow the same
trajectory. As we will see, this simple observation has far reaching consequence.

Imagine being confined to a sealed box. Your challenge, if you chose to accept it, is to determine
the physical conditions outside the box by performing experiments inside the box. Consider first
the case where the box is sitting in an electric field. How could you tell? Easy, just study the
motion of an electron and a proton. Because these particles have opposite charges they will
experience forces in opposite directions (see Fig.2). However, the same does not work for gravity.
Since the gravitational charge (i.e. mass) is the same for all objects, two test particles with
different masses will fall in exactly the same way. But, the particles are still falling, so haven’t we
detected the gravitational field? This is where Einstein’s genius comes in. He pointed out that
the motion of the two particles would be exactly the same if instead of sitting in a gravitational
field, the box was actually in empty space but accelerating at a constant rate a = —g (see Fig. 2).
The two particles will fall to the ground as before, but this time not because of the gravitational
force, but because the box is accelerating into them. We conclude that:

A uniform gravitational field is indistinguishable from uniform acceleration.

A corollary of this observation is the fact that the effects of gravity can be removed by going to
a non-inertial reference frame, like for the fictitious forces shown in (1.8). In particular, if the
box is freely falling in the gravitational field (i.e. its acceleration is a = g) then the particles in

M m
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Figure 3. In a freely falling frame objects do not experience the gravitational force.
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Lab frame
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Figure 4. Illustration of tidal forces arising from the inhomogeneous gravitational field of the Earth.
These forces cannot be removed by going to the freely falling “lab frame.”

the box will not fall to the ground. Einstein called this his “happiest thought”: a freely falling
observer doesn’t feel a gravitational field (see Fig. 3).

What about other experiments you could do (not just dropping test particles)? Could they
discover the presence of a gravitational field? Einstein said no. There is no experiment—of
any kind—that can distinguish uniform acceleration from a uniform gravitational field. This
generalization of the WEP is called the Einstein equivalence principle (EEP). It implies
that, in a small region of space (so that the gravitational field is approximately uniform), you
can always find coordinates so that there is no acceleration. These coordinates correspond to a
local inertial frame where the spacetime is approximately Minkowski space. Said differently:

In a small region of spacetime, the laws of physics reduce to those of special relativity.

As we will see, the EEP suggests that the effects of gravity are associated with the curvature
of spacetime which becomes relevant on larger scales where the field cannot be approximated as
being uniform.

In arguing for the equivalence between gravity and acceleration it was essential that we re-
stricted ourselves to uniform fields over small regions of space. But what if the gravitational field
is not uniform? Consider a box that is freely falling towards the Earth (see Fig.4). We again
drop two test particles. The gravitational attraction between the particles is minuscule and can
therefore be neglected. Nevertheless, the two particles will accelerate towards each other because
they each feel a force pointing towards the center of the Earth. This is an example of a tidal
force, arising from the non-uniformity of the gravitational field. These tidal forces are the real
effects of gravity that cannot be canceled by going to an accelerating frame. Note that tidal
forces cause initially “parallel” trajectories to become non-parallel. As we will see, this violation
of Euclidian geometry is a manifestation of the curvature of spacetime.

1.3 Gravity as Curved Spacetime

We have by now hinted several times at the fact that gravity should be interpreted as spacetime
curvature. This is such an important feature of our modern understanding of gravity that it is



Figure 5. Setup of the Pound-Rebka experiment. Light emitted by Alice is received with longer wave-
length by Bob.

worth belaboring the point. In the following, I will give a simple argument which will link the
equivalence principle rather directly to the curvature of spacetime.

Let me begin by describing a famous observational consequence of the equivalence principle,
the gravitational redshift. Consider Alice and Bob in a uniform gravitational field of strength
¢ in the negative z-direction (see Fig.5). They are at heights z4 = 0 and zp = h, respectively.
Alice sends out a light signal with wavelength A4 = Ag. What is the wavelength Ap received by
Bob? By the equivalence principle, we should be able to obtain the result if we take Alice and
Bob to be moving with acceleration g in the positive z-direction in Minkowski spacetime (see
Fig.6). Assuming Av/c to be small, the light reaches Bob after a time At &~ h/c. By this time,
Bob’s velocity has increased by Av = gAt = gh/c. Due to the Doppler effect, the received light
will therefore have a slightly longer wavelength, Ag = Ao + A\, with

AN Av  gh
=~ _ = _ 4 1.10
Ao c c2 ( )
By the equivalence principle, light emitted from the ground with wavelength Ag must therefore
be “redshifted” by an amount

AN AdD

—_— = — 1.11
== (111)

Bob§

|

Figure 6. By the equivalence principle, the result of the Pound-Rebka experiment should follow from the
Doppler shift of the light in an accelerating frame.

Aliceg




where A® = gh is the change in the gravitational potential. This gravitational redshift was first
measured by Pound and Rebka in 1959. Although we derived (1.11) for a uniform gravitational
field, it holds for a non-uniform field if A® is taken to be the integrated change in the gravitational
potential between the two points in the spacetime.

We can also think of the gravitational redshift as an effect of time dilation. The period of
the emitted light is T4 = A4/c and that of the received light is Tp = Ap/c. The result in (1.11)
then implies that

Op— @
Tp = (1 + BCQA> Ty. (1.12)

We conclude that time runs slower in a region of stronger gravity (smaller ®). In the example
above, we have ®4 < ®p (Alice feels a stronger gravitational field than Bob), so that T4 < T
(time runs slower for Alice than for Bob). Although our thought experiment involved light signals,
the result holds for any type of clock in a gravitational field. It therefore also applies to the heart
rate of the observer. In our example this means that Alice will see Bob aging more rapidly. This

“gravitational twin paradox” has been tested with atomic clocks on planes.?

Let us finally see why all of this implies that spacetime is curved. Consider the same setup as
before. Alice now sends out two pulses of light, separated by a time interval Aty (as measured
by her clock). Bob receives the signals spaced out by Atp (as measured by his clock). Figure 7
shows the corresponding spacetime diagram. Since the gravitational field is static, the paths
taken by the two pulses must have identical shapes (whatever that shape may be). But, this then
seems to imply that Atp = Aty, in apparent contradiction to (1.12). What happened? When
drawing the congruent wordlines in Fig. 7 we implicitly assumed that the spacetime is flat. The
resolution to the paradox is to accept that the spacetime is curved.

To see this more explicitly, consider a spacetime in which the interval between two nearby
events is not given by ds? = —c?dt? + dx?, but by

ds? = — <1 + 2@6(;()) dt? + dx?, (1.13)
with ® < ¢?. In these coordinates, Alice sends signals at times ¢4 and t4 + At, and Bob receives
them at tp and tg + At. Note the the spacetime diagram is still that shown in Fig. 7, with two
congruent worldlines. However, although the coordinate interval At is the same for Alice and
Bob, their observed proper times are different. In particular, the proper time interval between
the signals sent by Alice is

ATy =/ —goo(x) At = \/1+2(}%Atz <1+q);) At, (1.14)
c c

2Accounting for time dilation effects is also essential for the successful operation of the Global Positioning
System (GPS). The satellites used in GPS are about 20000 km above the Earth where the gravitational field is
four times weaker than that on the ground. Because of the gravitational time dilation, the clocks on the satellites

tick faster by about 45 us per day. Correcting for the relativistic time dilation due to the motion of the orbiting
clocks (at about 14000 km/hr), the net effect is 38 us per day. This is a problem. To achieve a positional accuracy
of 15m, time throughout the GPS system must be known to an accuracy of 50ns (the time required for light to
travel 15m). If we didn’t correct for the effects of time dilation, the GPS would accumulate an error of about
10km per day. Said differently, the accuracy we expect from the GPS would fail in less than 2 minutes.



Atp

Ata

Figure 7. Spacetime diagram showing the wordlines of two light pulses. In a static spacetime, the
worldlines must have identical shapes and hence Aty = Atpg.

where we have used that Ax = 0 and expanded to first order in small ® 4. Similarly, the proper
time between the signals received by Bob is

®
Arp ~ (1 + cf) At. (1.15)
Combining (1.14) and (1.15), we find
® D\ " dp—
Arp = (1 + f) (1 + 2A> Aty ~ (1 + BQA) Aty (1.16)
C C C

which is the same as (1.12). The time dilation has therefore been explained by the geometry of
spacetime.
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2 Some Differential Geometry

Since gravity is a manifestation of the geometry of spacetime, we will start this course by devel-
oping the necessary mathematical background to describe curved spaces and, ultimately, curved
spacetime. Our treatment won’t be rigorous, meaning that we will not prove anything the way
mathematicians would. The purpose of this chapter is to understand what kind of objects can
live on curved spaces and the relationships between them.

2.1 Manifolds and Coordinates
2.1.1 What is a Manifold?

You should be familiar some basic manifolds, although you might not have used the term before.
For example, Euclidean space R" is a manifold. A circle S' and a sphere S? are manifolds.
So is the torus 72. The higher-dimensional generalizations of the sphere and torus, S" and
T™, are all manifolds. In general, manifolds are smooth curves and surfaces, as well as their
higher-dimensional generalizations. More abstractly, the set of continuous rotations in Euclidean
space also forms a manifold, Lie groups are manifolds, the phase space of classical and quantum
mechanics, as well as the space of thermodynamic equilibrium states, are all manifolds. What
all of these examples have in common is that they are continuous spaces, rather than a lattice of
discrete points. Let us therefore start with the following vague definition of a manifold:

An n-dimensional manifold M is a continuous space that looks locally like R™. The different
patches of the manifold can be smoothly sewn together.

We will soon be more precise about the meaning of “looks like” and “smoothly sewn together.”

In general relativity, we describe spacetime as a Lorentzian manifold which is a manifold
that locally looks like four-dimensional Minkowski space, R1'3. This guarantees that the theory
reduces to special relativity in small regions of spacetime and therefore satisfies the equivalence
principle. For now, I will continue to talk about Euclidean manifolds, that look locally like R™,
but all concepts will generalize straightforwardly.

2.1.2 Coordinate Charts

You are familiar with the concept of coordinates as a set of real numbers (z!,...,2") that label
each point on the manifold. We will now review this in a slightly more formal language.

Coordinates are maps between an open set of points U on M and points on R” (see Fig. 8):
¢: U R". (2.1)

The map ¢ is also called a (coordinate) chart. In general, we need more than one chart to
cover the entire manifold. The collection of all charts ¢, is called an atlas.

11



R’n

Figure 8. Coordinates are a map ¢ from points p in an open set U € M to R"™.

For every point p € U, we have

¢(p) = (' (p),...,2"(p)). (2.2)

We will also use the shorthand z#(p), with u = 1, ..., n for Euclidean manifolds and 4 =0, ..., n—
1 for Lorentzian manifolds. We will always assume that the map is invertible, in which case the
inverse map ¢! (z#(p)) exists and gives you the point p on M.

We require that all charts are compatible in the regions of overlap. For concreteness, consider
two charts ¢; and ¢2 which define two sets of coordinates, z#(p) and y*(p). For points in the
overlap region, we can define the composite maps ¢9 o gbl_l and ¢1 o ¢g ! (also called transition
functions) which map points from R™ to R™ (see Fig.9). These maps are simply a fancy way of
describing the coordinate transformations y*(x) and z*(y), respectively. The maps ¢; and
¢2 are compatible if these coordinate transformations are smooth (differentiable) functions.

o1 ®2

R"™ R"™

¢ao ¢!

Figure 9. In general, multiple coordinate charts are needed to cover a manifold. Here, we show two charts
¢1 and ¢ defining two sets of coordinates, 2*(p) and y*(p). The composite map ¢z o ¢, corresponds to
the coordinate transformation y*(z).

12



2.1.3 Examples

To make this discussion a bit less abstract, let me give a few examples of manifolds and the
associated coordinate charts:

e S': The unit circle is defined as the set of points with fixed distance from the origin in R?,
22 +y? = 1, which we can also write as

x=cosf, y=sinb. (2.3)

You must be used to taking 6 € [0,27) and moving on with your life. However, there is a
small issue with the chart not being define on a open set. The limit 6§ — 0 is only defined
from one side, which causes problems if we want to differentiate a function at 6 = 0. For
this reason, we need at least two charts to cover S*.

Consider the two antipodal points g1 = (1,0) and g2 = (—1,0) (see Fig. 10). By removing
these two points from the circle, we can define the two open sets U; = S' — {q1} and
Uy = S? — {g2}. The following two charts then cover the whole circle

¢1 : Ul —> (0,271’)
¢o: U (—m,m)

The two charts overlap on the upper and lower semi-circles. The transition function is

91 if@l (S (0,7T)

02=¢2<¢;1<01>>={9 o i 0y € (r.2m) (2.6)
1 — 27 11 U1 T, 2T

Note that the transition function is only defined on the overlap of the two charts, i.e. it
isn’t defined at §# = 0 (corresponding to the point ¢;) and § = 7 (corresponding to ¢2). It
is obviously a smooth function on each to the two open intervals.

¢1 l P2

O 7o) (o, O
0 2 - T

Figure 10. Illustration of the two coordinate charts of the unit circle. The map ¢, excludes the point ¢,
while ¢5 excludes ¢o.
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e S2: The unit sphere is the set of points with fixed distance from the origin in R?, 22 +y% +
2?2 =1, which we can also write as

x =sinfcos¢p, y=sinfsing, 2z =cosh. (2.7)

Again, you are probably used to taking 6 € [0,7] and ¢ € [0,27) and be done with it.
However, as for the circle, we have to face the fact that this doesn’t correspond to an open
set. Using (2.7) with 6 € (0,7) and ¢ € (0,27) defines the chart ¢; illustrated in Fig. 11.
This chart misses the line of longitude defined by ¥y = 0 and « > 0. To cover the whole
sphere, we need a second chart. For example, we can define a chart ¢o using a different set
of spherical polar coordinates:

r=—sinf cos¢’, y=cosl, z=sinf#sing, (2.8)

with 6’ € (0,7) and ¢ € (0,27). This chart misses half of the equator (the line defined by
z=0and x < 0). The union of ¢ and ¢ defines an atlas for the sphere. It would be easy
to check that the transition functions ¢ o ¢y Land ¢ o ¢1_1 are smooth functions.

o1 z b2 z

Figure 11. Illustration of the two coordinate charts of the unit sphere.

2.2 Functions, Curves and Vectors

Having introduced manifolds, we now proceed to define various kinds of structures on them. The

simplest object we can define on a manifold is a function.

A function is a map (see Fig. 12)
f: M—R, (2.9)

which assigns a real number to each point on the manifold. Introducing a coordinate chart
¢ in a region U € M, the composite map f o ¢! gives f(x#), which describes the function
in terms of coordinates on ¢p(U) € R™.

14
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Figure 12. A function f is a map from M to R. Introducing a coordinate chart ¢, the function is given

by fog¢™" (or f(a*)).

In GR, such functions are sometimes called a scalar fields. A function is called smooth if fo¢?
is a smooth function for any chart ¢.

Next, we want to define vectors on a manifold. This turns out to be a bit more tricky. You all
have a notion of vectors on R™ as arrows stretching between points. Unfortunately, this picture
does not generalize to curved manifolds. Even worse, thinking about vectors in this way doesn’t
make any sense for general manifolds and can lead to confusion. As we will now discuss, vectors
are not defined on the manifold itself. Moreover, a vector does not stretch from one point on the
manifold to another. Instead, a vector is an object associated to a single point.

A better definition of vectors is terms of tangent vectors along curves on the manifold. To
build up to this definition, we first first have to introduce the concepts of curves and directional
derivatives. We will do this one by one.

A curve is defined by the map (see Fig. 13)
v I— M, (2.10)

where I is an open interval on R. This labels each point along the curve v by a parameter
A € I. The composite map ¢ o 7 defines z#(\), which describes the curve in terms of
coordinates on R™.

Now let f: M — R and v : I — M be a smooth function and a smooth curve, respectively.
The function along the curve is then defined as the following composite map (see Fig. 14):

foy: IR (2.11)

15



Vv

Figure 13. A curve v on a manifold M is defined by a map from points on an interval I € R to M.
Introducing a coordinate chart ¢, the curve is represented by ¢ o~ (or z#(X)).

Introducing a coordinate chart ¢, we can also write this as

foy=(fop No(pony), (2.12)
~——— ——
f@h) ()

which is a complicated (but more precise) way of writing f(x*())), the coordinate representation
of the function along the curve. Note that f o~ is defined independently of our choice of coordi-
nates, while f(z#(\)) depends on the coordinates. The latter is made explicit by the appearance
of the coordinate chart ¢ in (2.12).

Taking a derivative of (f o)(\) with respect to the parameter A\ gives the rate of change of
the function along the curve:

LU(Fom) = 5760, (213)
which is also called a directional derivative. You should be familiar with the fact in R™ the
rate of change of a function f along a curve is given by the directional derivative v, - (V f)p,
where v, is the tangent vector to the curve at the point p. Mathematicians think of the vector
v, as defining a linear map from the space of smooth functions on R™ to R: f i+ v, - (Vf),. It
is this point of view that generalized easily to the case of a curved manifold.

fory R

Figure 14. The composite map f o~ defines a function along the curve. The directional derivative of
this function defines the tangent vector along the curve, V,,(f) = df /dA.

16



The tangent vector to the curve v at the point p is defined by (see Fig. 14)

_a

p_d)\

Vo) = = F(N) (214)

Since the function f is arbitrary, we can even write V, = d/d\ and think of the vector as a
linear map from the space of smooth functions on M to R.

Our definition of a tangent vector satisfies two important properties: 1) it is linear, meaning
that
Volaf +bg) = aVp(f) +bVp(9), (2.15)

where f and g are functions and a and b are real numbers; 2) it satisfies the Leibniz rule:

Vo(fg) = Vo(f)g + fV(9) - (2.16)

We can used these properties to prove that the set of all vectors at a point p forms an n-
dimensional vector space, called the tangent space T,,(M).

Proof. Consider two curves v and x going through p, with v(0) = p and x(0) = p (see Fig. 15).
Their tangent vectors at p are V}, and U, respectively. We first want to show that the new vector
W, = aV, + bU,, is also a tangent vector to a curve through p. The new vector is obviously also
a linear map, so we just need to show that it satisfies the Leibniz rule:

Wp(fg) = (aVp +0Up)(f9) = a[Vy(f)g + fVi(9)] + 0[Up(f)g + fUp(9)]
= [aVp(f) + bUp ()] g + [flaVp(g) + bUp(9)] (2.17)
= Wp(f)g+ fW(9).-

The tangent vectors therefore span a vector space.

Figure 15. Tangent vectors span the n-dimensional tangent space T,,(M).

To prove that the space is n-dimensional, we introduce a basis. Let 1 < u < n, and consider
the set of curves ~, through p defined by

oy, = (:L'l(p), . x“_l(p),x“(p) + /\,m“H(p), o2 (p)). (2.18)

17



The corresponding tangent vector at p is the ordinary partial derivative

=)
= =0,. (2.19)
((%W #(p)

If you think about it, this is how partial derivatives are defined: a partial derivative with respect
to p is the directional derivative along a curve defined by ¥ = const. for all v # u. We now just
need to show that the ordinary partial derivatives span the tangent space, i.e. any tangent vector
Vp = 0/0X can be expressed in terms of partials d,. Using the chain rule, we can write (2.14) as

V) = &= )

L(oohe@on)

~dX
a2t (2.20)
f@*(N)
_dstof
Cd\ Oxn
Since the function f was arbitrary, we have
d dxzt
— = ——0,- 2.21
dx  dx " (221)

The partial derivatives with respect to the coordinates therefore indeed define a basis for the
vector space called the coordinate basis. This completes the proof that the tangent space
T,(M) is an n-dimensional vector space. O

Note that this vector space is only defined at the point p. At a different point ¢, we would have
a different tangent space T,(M). It therefore make no sense to add vectors at different points;
they live in different tangent spaces. To compare two vectors at separated points, we still need
to learn how to map vectors from one tangent space to another (see Section 4). A collection of
vectors at each point on the manifold defines a vector field. The set of all tangent spaces of the
manifold is the tangent bundle, T'(M).

Let {e(,), = 1,...,n} be a set of basis vectors (not necessarily the coordinate basis). The
brackets on the index were added to warn you that these are not the components of a vector, but
a set of n vectors. Any vector V can be expanded as

V= Vue(u) , (2.22)

where we have dropped the subscript p on V,,. The expansion coefficients V# are the components
of the vector. In the coordinate basis, e(,) = 0y, the components are

_ daxt

o 4
v ax |’

(2.23)

3

which followed from (2.21). You will often hear people refer to V# as the “vector,” but you now

see that this isn’t quite correct.
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It will be useful to know how the components of a vector transform under a change of co-
ordinates z# — a# (or equivalently a change of charts ¢ — ¢’). Consider the coordinate basis
e(u) = Oy and make a change of coordinates (e.g. from Cartesian to polar). The transformation
of the basis vectors follows directly from the chain rule

0 B ox#* 0 B oxH
ozt dxH Ozt Ozt

' — Oy = Oy - (2.24)

Since the vector V' = V*¢(,) should remain unchanged, we then have

VEG, =V,
— vu’gg‘:;aw (2.25)
and hence ,
v = gﬁi v, (2.26)

where we use that the matrix dz# /dz* is the inverse of the matrix dz*/dz* . In non-geometric
treatments of GR (like Weinberg’s book), the transformation rule (2.26) would be taken as the
defining property of vectors.

Given two vector fields X and Y, we can define the commutator:

(X, Y](f) = X(Y(f)) =Y (X(f))- (2.27)

Sometimes this is called the Lie bracket. The commutator is itself a new vector field (while the
product XY is not): it is linear and obeys the Leibniz rule

[X,Y](af +bg) = a[X, Y](f) + b[X, Y](g), (2.28)
(X, Y](fg) = fIX,Y](9) + g[X, Y](f)- (2.29)

It is a useful exercise to verify these properties. Another instructive exercise is to show that the
components of the commutator are

(X, V]* = X20YH — Y29y X* . (2.30)

Note that, since partial derivatives commute, the commutator of the vectors fields given by the
partial derivatives of coordinate functions, {0, }, always vanishes.
2.3 Co-Vectors and Tensors

Having defined vectors on a manifold, we can now introduce the associated co-vectors (also
called dual vectors or one-forms or “vectors with a downstairs index”). Given an understanding
of vectors and co-vectors the generalization to tensors will be straightforward.
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2.3.1 Co-Vectors

You have worked with co-vectors before, but you probably gave them different names. For
example:

1. Linear algebra
Consider a two-dimensional vector living in the vector space V:

V= Gg) . (2.31)

A co-vector is simply the transpose of the vector
vT = (v1 vg) . (2.32)
It lives in the dual vector space V*. The inner product of a vector and a co-vector can then

2
Uty = <U1 Ug) (“2) — S UV eR. (2.33)

i=1

be written as

We can think of the co-vector U as mapping the vector V to the number UTV.

2. Special relativity
In special relativity, V,, = 1,, V" are the components of a co-vector. The inner product of
a vector and a co-vector then is
3
U-V=>) UJV'eR. (2.34)
n=0

Again, the co-vector U, maps the vector V# to a number U,V#.

3. Quantum mechanics
A state in quantum mechanics can be written as a vector [¢)) (“ket”) living in the Hilbert
space H. The corresponding co-vector is (1| (“bra”) and the inner product of two states
(“bra-ket”) is
(¢ly) € C. (2.35)

For a discrete system, the ket might be represented by a column vector like in (2.31) and
the bra becomes a row vector like in (2.32). The entries of the vectors are general complex
numbers, so we have to take the Hermitian conjugate (not just the transpose) to relate the
two types of vectors.

Let us give a more abstract definition:

A co-vector is a linear map from a vector space V to R:
w:V—R, sothat w(V)eR. (2.36)

The co-vectors w live in the dual vector space, V*.
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Being a linear map means
w@V +boW)=aw(V)+bw(W), (2.37)

where V, W are vectors and a, b are real numbers. Co-vectors form a vector space, in the sense
that the linear combination of two co-vectors w and 7 is another co-vector.

We are interested in the dual of the tangent space 7},(M), which we call T;;(M). In that case,
there is a particularly simple way to construct a co-vector.

Let f: M — R be a smooth function. We define the co-vector df by

df(v)=Vv(f), (2.38)

with V € T,(M).

Now, we pick V' = ¢(,) = 0, (a coordinate basis vector) and f = x# (a coordinate function).
Equation (2.38) then implies

dz"(9,) = 0y (a*) = B o . (2.39)

We identify dz* as the dual of the coordinate basis d,,. The dual of a general basis vector satisfies
e (e(,)) = ot

Every co-vector can then be written as

w= w#e(“) . (2.40)

where w,, (with a downstairs index) are the components of the co-vector. The action of a co-vector
on a basis vector is

we) = wve® (eq)
= w0, (2.41)
= wu y
i.e. the action on a basis vector extracts the corresponding component of the co-vector. The
action of a co-vector on a general vector then is

w(V) =w(Vte,)
= w(e))V* (2.42)

_ @
=w, V.

This is the familiar way of writing the inner product of a vector and a co-vector in components.

The co-vector df takes the form
of |
= g

af (2.43)
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To verify this, note that
df(v) = % dz"(V¥0,)
= V”iﬁ; dzt(9,) (2.44)
—ve Il vra = vip),

which agrees with (2.38). We see that the components of the co-vector df are the gradient of the
function f with respect to the coordinates z*.

. . / . .
Under a coordinate transformation, z# — x* , the basis co-vectors will transform as

/

oxH

o
dzt = Oxt

da, (2.45)

To leave w = w,dx* invariant, the components of the co-vector must then transform as

oxH

Wy = —— Wy | .
o ggn™H

(2.46)

In non-geometric treatments, this transformation rule is taken as the defining property of co-
vectors.

2.3.2 Tensors

Having defined vectors and co-vectors, the generalization to arbitrary tensors is relatively straight-
forward.

A tensor of rank (m,n) is a multi-linear map

T: Ty(M)x...xTy(M)xT,(M)x...xT,(M) — R. (2.47)

e .
(m times) (n times)

In other words, given m co-vectors and n vectors, a tensor of type (m,n) produces a real
number, T'(wi, ..., W, Vi,..., V).

If e(,) is a basis for T,(M), with dual basis e then the components of T' are
THrtmy, =T, e ™) e,y e ) (2.48)

Tensors, like vectors and co-vectors, are also basis independent. From this it is simple to infer
how the components transform under a coordinate transformation:

/ /
i ) V1 Un
Tt | ox Ozlm Oz Oz

, , e fim
Aotk = g g ggh o | (2.49)

This transformation law is easy to remember, since there is only one way to correctly match the
indices on both sides.
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There are a few important operations that we can perform on tensors. First, given two tensors
S and T, of rank (p, q) and (r, s), we can construct a larger tensor of rank (p+ r, ¢+ s) using an
operation known as the tensor product:

ST (Wiy.w ,Wpy ooy, Wpgr, Vi, ooy Voo, Vigs)

(2.50)
= S(wl,...,wp,‘/l,...,‘/,],...,‘/q+s) X T(wp+1,...,wp+r,‘/q+1,...,Vq_,_s).
In terms of components, this simply means
(S@T)rrteProbry,  eor.os = Sy TP P o oy (2.51)

Next, given an (r, s) tensor, we can create a lower rank (r — 1, s — 1) tensor by contraction. In
terms of components, contraction is defined as summing over one upper and one lower index. For

example,
SHP = TH | (2.52)

where the Einstein summation convention is used for the repeated index A. For a (1,1) tensor,
the contraction defines the trace
T=T",. (2.53)

Careful, T" now denotes the sum of the diagonal components of the “matrix” T#, and not the
abstract tensor. This notation usually doesn’t cause confusion. Finally, given an arbitrary tensor
T, we can symmetrize (or anti-symmetrize) some of its indices. For example, given a (0,2)
tensor T with components T),,,, we can define a symmetric tensor S and an anti-symmetric tensor
A with components

1

S = 5T+ To) = T (2.54)
1

ij = i(TMV — TVH) = T[,u,y] . (2.55)

This generalizes to higher-rank tensors. For example:
1
TWwe  — §(TW”U +TVHP ). (2.56)
We can also (anti-)symmetrize multiple indices, as long as they are all up or down indices. In

this case, we sum over all possible permutations of the indices in question. For example:

1
TM(Vpo’) = ? (Tuupo + Tupz/a + T'upozx + T“apu + T“crup + TMVO‘p) ) (2-57)

where the factor of 3! counts the number of permutations. When we anti-symmetrize multiple
indices, we weight even and odd permutations with opposite signs. For example:

1
T“[Vpa] = ? <Tuupa - T“pya + Tupau - T“O’pl/ + Tucn/p - TMZIO’p) . (258)

Finally, indices can be excluded from the symmetrization procedure using vertical bars. For
example, in T"[,|, ;) we anti-symmetrize v and o, but not p.
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2.4 The Metric Tensor

We are ready to introduce one of the most important objects in differential geometry: the metric.
It will allow us to define coordinate-independent distances between points in space(time).

2.4.1 Definition of the Metric

To motivate the definition of the metric, let us recall how we would compute the distance along
a curve v in R3. Let dx/d) be the tangent vector of the curve. The distance between two points

1 dx dx
d(p,q)E/ Ay X ax (2.59)
; d\ X

We see that the integral involves the inner product of the tangent vector. To define a distance

~v(0) = p and (1) = ¢ then is

on a curved manifold, we therefore need to generalize the inner product between two vectors.

An inner product maps a pair of vectors to a number. At a point p, we write this map as
g: Tp(M) xT,(M) — R. (2.60)
To make this (0,2) tensor the metric tensor, we require:
1) Tt is symmetric: g(V,U) = g(U, V).

2) It is non-degenerate: If g(U, V)|, = 0, for all U, € T),(M), then V,, = 0.

In a coordinate basis, we have
g= gul/d$“ ® dz” s (2.61)

which is often abbreviated as ds? = g datda”. Property 1) means that the components of g are
a symmetric matrix: g,, = g,,. In that case, one can always find a basis that diagonalizes this
matrix. Property 2) implies that none of the eigenvalues vanishes and det(g,,) # 0. This allow
us to define the inverse metric, g, via

9" gue = 4. (2.62)

The number of positive and negative eigenvalues of the metric is independent of the choice of basis
and is called the signature of the metric. If all eigenvalues are positive, we have a Riemannian
metric. In GR, we will be interested in Lorentzian metric with one negative eigenvalue. A
Riemannian (Lorentzian) manifold is a pair (M, g), where M is a differentiable manifold and g¢
is Riemannian (Lorentzian) metric. Our spacetime is a Lorentzian manifold.

2.4.2 The Metric as a Duality Map

A metric provides a map between vectors and co-vectors. Given a vector with components V#,
we can define a co-vector with components

V= guV". (2.63)
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Similarly, given a co-vector w, we can use the inverse metric to define a vector
wh = gMw, . (2.64)

Of course, any rank (0, 2) tensor will map a vector to a co-vector, but we are prescribing a special
meaning to those mapped by the metric tensor. We assert that V# and V,, describe the same
physical object. Physicist: “We use the metric to lower the index from V# to V,,.” Mathematician:
“The metric provides a natural isomorphism between a vector space and its dual.”

2.4.3 Distances on a Manifold

The length of a curve can then be defined as in (2.59):

1
d(p,q) = /0 V.V, (2.65)

where V' is the tangent vector along the curve. The absolute value is required because g(V, V')
doesn’t have to be positive definite. In Euclidean signature, we have g(V, V) > 0 (and only zero
if V= 0), while in Lorentzian signature, we have

g(V,V) >0 = spacelike
g(V,V)=0 = null (2.66)
g(V,V) <0 = timelike

A curve in a Lorentzian manifold is called timelike if its tangent vector is everywhere timelike.

Such curves describe the trajectories of massive particles. In that case, it is useful to define the

proper time as d72 = —gudxtdz” > 0. Integrating this along the curve gives
1
dxt dxv
T= dM/—guw———. (2.67)
/0 odN dA

If 7 is used to parameterize the curve, then its tangent vector is the four-velocity, with com-
ponents U¥ = dx* /dr.
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3 A First Look at Geodesics

General relativity contains two key ideas: 1) “spacetime curvature tells matter how to move”
(equivalence principle) and 2) “matter tells spacetime how to curve” (Einstein equations). In
this chapter, we will develop the first idea a bit further.

3.1 Action of a Point Particle

The action of a relativistic point particle is

S = —m/dT, (3.1)

where 7 is the proper time along the worldline of the particle and m is its mass. It is not hard
to understand why this is the correct action. The action must be a Lorentz scalar, so that
all observers compute the same value for the action. A natural candidate is the proper time,
because all observers will agree on the amount of time that elapsed on a clock carried by the

moving particle.

As a useful consistency check, we can evaluate the action (3.1) for a particular observer in
Minkowski spacetime. Using

dx\ > d
dr = \/—ds? = \/dt2 — dx® = dt|[1 — <X> —dtv/1—0? == (3.2)

t
dt v’
the action can be written as an integral over time

S:m/dt\/lvz, (3.3)

where v? = (5Z-j:bia'cj. For small velocities, v < 1, the integrand is —m + %mvz. We see that the
Lagrangian is simply the kinetic energy of the particle, plus a constant that doesn’t affect the
equations of motion.

Substituting the line element (1.13) into (3.1), we get

S:—m/dt\/(1+2<l>)—v2

1
%/dt <—m+2mv2—m<1>+~->,

where, in the second line, we expanded the square root for small v and ®. We see that the metric

(3.4)

perturbation ® indeed plays the role of the gravitational potential in Newtonian gravity. It is

also obvious now why the inertial mass (appearing in the kinetic term %va) is the same as the

gravitational mass (appearing in the potential m®).

3.2 Geodesic Equation

Let us now use the action (3.1) to study the motion of particles in a general curved spacetime
with metric g, (¢,x). Consider an arbitrary curve v connecting two points p = v(0) and ¢ = (1)
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Figure 16. Illustration of a family of curves connecting two points in a spacetime. In order for a path to
be a geodesic, its action must be a minimum, which implies that small variations of the path should not
change the action.

(see Fig.16). A geodesic is the preferred curve for which the action (3.1) is an extremum. As I
will show in the box below, this curve satisfies the geodesic equation

A2zt p dx® dz?
i s g =0 (3:5)

where I'} ; is the Christoffel symbol:

rH 9" (0agpr + 959ar — Orgap)

N =

B

We see that the simple action (3.1) has given rise to a relatively complex equation of motion.

Proof. For each such curve, we can compute the action

dxH d:v”
J=-m / A\ 9y Vv an an (3.6)

_G

Finding the path of extremal action is then a problem in the calculus of variations. A curve
is a geodesic if it satisfies the Euler-Lagrange equation

A (9G\_0G . d (9L oL 57
dx \oir ) Oz dt \9¢) 9q’ '

where & = dx* /d\. The relevant derivatives are

oG 1 v

@ = —ag;wx ) (3'8)
oG 1 .

gzt~ ogOnde® (3.9)

Before continuing, it is convenient to switch from the general parameterization using A to

the parameterization using proper time 7. We could not have used 7 from the beginning
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since the value of 7 at the final point ¢ is different for different curves, so that the range of
integration would not have been fixed. Using

dr\? dr d drd d
_ frg— oV = 2 _— = _— = Y = e .1
<d)\> G =G =y =G = = oa - Y (3.10)

the Euler-Lagrange equation (3.7) can be written as

d dx? 1 dz® dzP
5 — =000 ——— =0 3.11
dr <g“ d7'> 2 MgBdT dr ( )
and hence ) 5
d“x” dz®dz¥ 1 dz® dx
V7 o oa9puv—F_— 57 — 3§ a5 5. — Y. 12
Iuv™ 172 + dagy dr dr 26“9 Bdr dr (3.12)

Replacing 9,9, in the second term by 3(daguw + vgua), we get

v 1 dz® dz?
G5 + 5 (0abp + 0G0 = Oudas) 7 ——— =0, (3.13)
and contracting the whole expression with g7* gives

d?z® 1 dz® dz®
dT2 + 59 ”(8agu5 + 85‘9“04 — 3“ga5) ?W = O, (314)

and contracting the whole expression with g7# gives

d?z® 1 dz® dz®

Relabelling indices, we get

d2zH " dz® dxP

et 2 — 1
42 e ar 9" (0agsx + 9gar — Orgas) » (3.16)

=0, with Fgﬁz

| =

as required.

A simpler Lagrangian

The square-root in the relativistic action (3.6) was a bit of an annoyance. It is therefore worth
pointing out that the geodesic equation can also be obtained more directly as the Euler-Lagrange
equation for the Lagrangian

L=G*=—g,i'i" |, (3.17)

where ## = dz#/d\. An extremum of G must be an extremum of £, since 0L = 2G 6G. It is

easy to confirm this directly from the Euler-Lagrange equation.
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Starting from the Lagrangian (3.17) is useful because it gives a convenient way to identify
conserved quantities. First, note that £ has no explicit dependence on A, so that 9L/0\ = 0.
The total time derivative of the Lagrangian then is

AL _ 9L det 0L dit oL
d\ O\ d\ Ozt dX\ Ozt

_datd (0L 0L 0L d (O
= \oer ) T oar MM G T dx \ oan (3.18)
d (0L "
= — | —1x
d\ \ O+ ’
which can be rearranged into
d oL
el _ Y=
i\ (E aj;ux > 0. (3.19)
This shows that the “Hamilonian”
oL . e
H=L- @xu = guitt (3.20)

is a constant along the geodesic.For a massive particle, we set A equal to the proper time 7, and
the constraint becomes g,,@*&” = —1. A nice feature of the Lagrangian (3.17) is that is also
applies to massless particles, in which case we must have g,,z"z" = 0.

If an additional coordinate x®* doesn’t appear in the metric (such a coordinate is called
ignorable), then 0y, g = 0. This corresponds to a symmetry of the problem. Since the Euler-
Lagrange equation for (3.17) reads

d dz” 1 dxt dz”
N oav N | — *aa VN v 3.21
) <g d)\> 9 G N (3:21)
this implies the following conserved quantity
ga*y% = const. (3.22)

We will encounter this in many examples. A coordinate invariant way of capturing the symmetry
will be described in Section 4.3.

3.3 Newtonian Limit

In Newtonian gravity, the equation of motion for a test particle in a gravitational field is

R
dt?

= -0'0. (3.23)

Let us see how to recover this result from the Newtonian limit of the geodesic equation (3.5).
The Newtonian approximation assumes that: 1) particles are moving slowly (relative to the
speed of light), 2) the gravitational field is weak (and can therefore be treated as a perturbation
of Minkowski space), and 3) the field is also static (i.e. has no time dependence). The first

condition means that )
dz’ < dt
dr dr’

(3.24)
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so that (3.5) becomes

A2zt dt )’
—— 4T — ] =0. 2
gz T oo <d7’) 0 (3:25)

In the static, weak-field limit, we then write the metric (and its inverse) as

== +h v
Gru = My 7 (3.26)
g =t — p
where the perturbation is small, |h,,| < 1, and time independent. To first order in hy,, the
relevant Christoffel symbol is

1
T = §9M(3090,\ + 9ogox — Ox900)
1 . (3.27)
= —577’”5]‘%0-

The p = 0 component of (3.25) then reads d*t/dr? = 0, so that dt/dr is a constant, while the
p =i component becomes

Pt 1 (dt\?
Dividing both sides by (dt/dr)?, we get
>zt 1,
gz~ 27 hools (3.29)
which matches (3.23) if
hoo = —20. (330)

Note that this identification of the metric perturbation with the gravitational potential is consis-
tent with what we inferred previously from the equivalence principle, cf. (1.13).
3.4 Geodesics on Schwarzschild

In Section 5.5, we will derive the metric around a spherically symmetric star of mass M. The
result is the famous Schwarzschild solution

-1
ds? = — (1 — 2GM> de® + (1 — 2GM> dr? + r?(d6? + sin? 0 d¢?) | . (3.31)

T T

Let us look at the geodesics in this spacetime. One important application is to the orbits of
planets in the solar system. We will show how GR leads to an important correction to these
orbits compared to the Keplerian orbits of Newtonian gravity. This effect is largest in the case of
Mercury and was one of the first experimental evidence in favor of GR. (Another key prediction
is the bending of light, which will be covered in the Problem Set.)
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Euler-Lagrange equation

We start with the Lagrangian (3.17), which for the metric (3.31) becomes

-1
L= <1 - 2GM> T <1 - 2GM> 2 —r26? — r2sin? 692, (3.32)

r r
where the overdots denote derivatives with respect to A, which becomes 7 for a massive particle.
Note that the Lagrangian has no dependence on t or ¢, so the corresponding Fuler-Lagrange
equations imply two conserved quantities:

d (oL 10L 2GM .
4 <8£) =0 = LE—E%:TQSHFH(Z;. (3.34)
dA \ 8¢ 20¢

The two constants £ and L are the energy and the angular momentum of a test particle (per
unit mass). Next, we look at the Euler-Lagrange equation for the coordinate 6:

A oLy _oc
dx\ 99/ 06

d 2\ 0.2 . ‘9 .
I (2r 9)—27“ sinfcosf ¢ = 0=

We see that it is consistent to pick § = /2 and 6 = 0. In other words, a particle that moves

3.35
cos@ L2 7. ( )
774 - 27 0 .
sin° @ r r

purely in the equatorial plane will stay in the equatorial plane. Of course, since our system has
rotational symmetry, we can pick § = w/2 without loss of generality.

Restricting to § = 7 /2, the constraint g,, " %" = const becomes

”w ”w ) -1 . . .
da da :<1_2GM>t2_(1_2GM) 7;2_7%2:{“ timelike oo

GE_QMVKK r r 0 null

Using (3.33) and (3.34), we can write this as
2GM Y\ (L?
—E2+f2+<1—r )(r2+6>:0' (3.37)

It is instructive to rearrange this as

P24 Vr) =€, (3.38)

where £ = E?/2 and

_? GM P LGM
2 r 2r2 c2r3

For clarity, I have restored factors of the speed of light in the potential. Equation (3.38) is

(3.39)

the equation for a particle of unit mass and energy £ moving in a one-dimensional potential
V(r). A similar analysis in Newtonian gravity would have given the same equation, except the
effective potential would not have the last term proportional to 1/r3. (We can roughly think of
the non-relativistic limit as the limit ¢ — oo, which will remove the 1/r3 term in the potential.)
The difference between GR and Newtonian therefore becomes manifest when this term becomes
relevant, which is for small radius.
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Figure 17. Potential for massive particles (with L = 5) in the Schwarzschild geometry (with GM = 1).

Circular orbits

Figures 17 and 18 show the effective potentials for massive and massless particles, respectively.
A particle will move in the potential until is reaches a “turning point” where V' (r) = £ and hence
7 = 0. At extrema of the potential, dV/dr = 0, the particle can move in a circular orbit with
constant radius r = r.. Differentiating the effective potential, we find that circular orbits occur
when

eGMr? — L*r. +3GML*y =0, (3.40)
where v = 0 in Newtonian gravity and v = 1 in GR. The orbits are stable if the extremum is a
minimum and unstable if it is a maximum.
In Newtonian gravity (y = 0), circular orbits are at
12
T «GM

Te (3.41)
We see that for massless particles (e = 0) there are no circular orbits. This is consistent with the
potential not having an extremum.

In GR (v = 1), the effective potential looks the same as in Newtonian gravity for large radius r,
but starts to differ for small radius, when the —GML?/r® term kicks in. For massless particles
(e = 0), equation (3.40) has a solution at

re = 3GM (massless particles) . (3.42)

This is known as the photon sphere. It is an unstable orbit. The fate of other light rays depends
on the relative value of their energy F and angular momentum L. Note that the maximum of
the potential at r = r. is
Vinax = V(Tc) = LfQ; . (343)
54 (GM)?

The evolution of the photons depends on how their “energy” £ = E? /2 compares to Vijax.

32



V(r)[L?/54]

100 -
50

Figure 19. Plot of the radii of stable (7. 4+) and unstable (r. _) circular orbits for massive particles in
the Schwarzschild geometry. The smallest possible stable circular orbit is for r. = 6GM.

o For £ < Vpax, the energy is lower than the angular momentum barrier. Light emitted at
r < r. therefore cannot escape to infinity. Instead it will orbit the star before falling back
towards » = 0. On the other hand, light coming from r > r. will bounce off the angular
momentum barrier and return to infinity (see Section 3.6).

e For £ > Vi, the energy is greater than the angular momentum barrier, so that light
emitted from r < r. can escape, while light coming from r > r. can reach r = 0.

For massive particles (¢ = 1), equation (3.40) implies that the circular orbits are at
L2+ \/L* — 12(GM)2 L2
2GM
For L > +/12GM, this corresponds to two solutions, one stable (7. ) and one unstable (r._);

see Fig.19. In the limit L — oo, the two solutions are
L?+ [*(1-6G*M?/L? L?
= ( /L) _ < 3GM ) .

Tet = 20GM ~\am

et = (massive particles) . (3.44)

(3.45)
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Mercury’s orbit

Figure 20. Ilustration of the precession of the perihelion of Mercury (not to scale).

For L = +12G M, the two solutions merge into is a single stable orbit at
re =6GM . (3.46)

This is called the innermost stable circular orbit (ISCO). Finally, for L < v/12GM, there
is no stable orbit and the particle will spiral in. The Schwarzschild solution therefore has stable
circular orbits for » > 6GM and unstable circular orbits for 3SGM < r < 6GM.

3.5 Precession of Mercury

The orbits of the planets in the Solar system are not perfectly circular, but elliptical. Moreover,
as we will now show, in GR, these ellipses are not perfectly closed, leading to a precession of
the perihelia of the orbits® (see Fig. 20). We expect this effect to be largest for the inner planets
which feel the strongest gravitational pull from the Sun. Indeed, it was known since the 1850s
that the orbit of Mercury was anomalous, but the explanation was only given by GR.

We start with the radial equation (3.38) of a massive particle in the Schwarzschild geometry.
We will describe the radial evolution in terms of the angular coordinate ¢. In that case, a perfect
ellipse would correspond to a function r(¢) that is periodic with period 27. The precession of
the perihelion will be reflected in a change of the period of this function.

(5 - () (&) -5 (%)

3The perihelion of an elliptical orbit is the point of closest approach to the Sun.

Using
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equation (3.38) can be written as

dr\?> r 2GM 28
<d¢> to g b o 20Mr =Tt (3.48)
It is convenient to introduce the new variable
LZ
U= (3.49)

with u = 1 corresponding to a Newtonian circular orbit; cf. (3.41). The radial evolution equation
(3.48) then becomes

du\? L? 2(GM)? 26 L2
au _9 2 _ 3 = ) .
(qu) +(GM)2 u+u 77U (GM)? (3.50)
Differentiating this with respect to ¢ gives
d*u 3(GM)?

In Newtonian gravity, we would get the same equation with vanishing right-hand side. To solve
the problem in GR, we expand u into the Newtonian solution ug and a small deviation uq:

u=ug+up, (3.52)
where
d2U0
TQZ)Q —1+wuy=0, (3.53)
The Newtonian solution is
up=1+ecoso, (3.55)
where e is the eccentricity of the orbit.* Substituting this solution into (3.54), we get
d? 3(GM)?
W?L; +up = ([/2)(1 + ecos ¢)?
3.56
=~ 5¢ € cos 5€" cos .
A solution to this equation is
3(GM)? 1 1
up = <L2) [(1 + 262) + epsing — 662 coS 2@5] . (3.57)

Only the second term is not periodic and therefore leads to a precession of the orbit. Adding this

term to the Newtonian solution, we get

3(GM)?
Lz

4An ellipse with semi-major axis a and semi-minor axis b has eccentricity e = /1 — b2/a2.

u=1+4+ecosp+aepsing, a= (3.58)
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Assuming that « is small, this can be written as
u=1+ecos[(1 —a)p|. (3.59)

During each orbit, the perihelion therefore advances by an angle

6m(GM)?
An ordinary ellipse satisfies L? ~ GM (1 — e?)a and hence
6rGM
Ap = ———F— .61

where we have restored explicit factors of the speed of light. For Mercury, the relevant parameters

are GM
-2 =148 x10°m,
C
a=579%10"m, (3.62)
e = 0.2056 .
Substituting this into (3.61), we get
AdMercury = 5.01 x 107 radians/orbit = 0.103"” /orbit , (3.63)

where ” stands for arcseconds. Given that the orbital period of Mercury is 88 days, this can also
be expressed as

A¢Mercury = 43.0" /century | . (3.64)

The observed precession is 575" /century. Of this, 532" /century are explained by the gravi-
tational perturbations of the other planets and can be computed in Newtonian gravity. The
remainder, 43.0” /century, precisely matches the prediction of GR.?

3.6 Bending of Light

Another historically important prediction of GR was the bending of starlight by the Sun. T will
let you work out the details in a Problem Set and only sketch the main result here.

Figure 21 shows the bending of light in the Schwarzschild geometry. The distance b is the
impact parameter. It characterizes the distances of closest approach in the absence of the bending
of the light. We would like to determine by what angle ¢, the light is deflected due to the gravity
of the star.

We start again from the evolution equation for the radial coordinate

1., L2<1 2GM>_E2

~i? 4 5 (3.65)

2 272 r

SBefore GR was discovered, Le Verrier tried to explain the anomalous precession of Mercury by introducing
a new planet called Vulcan. This had been successful before: in 1846, Le Verrier had predicted the existence of
Neptun based on the anomalous motion of Uranus. This time, however, Le Verrier was wrong. The precession
of the perihelion of Mercury was not due to a new planet, but instead was a consequence of the breakdown of
Newtonian gravity.

36



Figure 21. Light bending in the Schwarzschild geometry.

Introducing the variable v = 1/r, and performing the same manipulations as in the previous
section, we can write this as

du\? 9 E?
<d<b) +u* (1 —-2GMu) = 77 (3.66)
Taking a derivative with respect to ¢, we get
d*u 9

As in our analysis of Mercury, we can find a solution to this equation by treating the right-hand
side perturbatively. The solution of the homogeneous equation is

d2uo 1

— +u=0 = wup= —-sing. 3.68

e + uo 0=7 ¢ (3.68)
Writing the solution as rgsin¢ = b it is clear that is nothing but the horizontal straight line
in Fig.21. As leading order, the light doesn’t get deflected. To get the next-to-leading order
correction, we use

d2u1 2
In the Problem Set, you will show that corrected solution u = ug + u1 is
1 GM
uzzsin¢+ﬁ(3+4cos¢+0052¢) . (3.70)

From this, we can extract at what angle ¢, the light escapes to r = oo (or equivalently u = 0).
Assuming that the deflection is small, we can use sin ¢ ~ ¢ and cos ¢ ~ 1. Equation (3.70) then
leads to

4G M
be? |’

qboo%_

(3.71)

where we have put back an explicit factor of ¢?. Let us estimate the maximal light bending for
the Sun. In that case, we have GM/c? ~ 1.5km and a light ray just grazing the surface of the
Sun has b~ Ry = 7 x 10° km. This then gives ¢oo ~ 8.6 x 107° radians or ¢, ~ 18”. Famously,
this effect was observed in 1919 (by Eddington and others) during a Solar eclipse.
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4 Spacetime Curvature

So far, we have studied how particles move in a curved spacetime, but we have not yet shown
explicitly how this spacetime curvature arises. This is the subject of the next two chapters. In this
chapter, we will develop the necessary mathematical formalism to describe spacetime curvature.
In the next chapter, we will then use this to derive an equation that shows how matter and energy

source the curvature of the spacetime.

4.1 Covariant Derivative

In Euclidean geometry, “parallel lines stay parallel.” How does this generalized to curved space?
What do “stay” and “paralle]” mean on a curved manifold? How do we even compare vectors
at different points on the manifold which live in distinct tangent spaces? Before we can answer
these questions, we have to learn how to take the derivative of a vector on a curved manifold.

We will first show that ordinary partial derivatives aren’t good enough. Consider the partial
derivative of a vector, yT*. Under a general coordinate transformation z# — z* (z), this
transforms as

/ T+ (' oz’ 9 [z _,
ONTY (o) = &Eg, ) _ s <8qu @;)) (4.1)
oz’ dxt y dx”  §%at y
= 5% gz T T (83:)" 8950890”) . (42)

The first term in (4.2) is what we would expect if the derivative were a tensor, but the second
term spoils the transformation law. The offending term arises from the partial derivative acting
on the transformation matrix dz# /dz”. We would like to define a new derivative VyT# that

does transform like a tensor: ,
' 3x‘7 ax“
- 9zN Oz

This new derivative is called a “covariant derivative.” In general, the covariant derivative V will

VT VT . (4.3)

take a rank (p,q) tensor T and produce a new rank (p,q + 1) tensor VT'. This new tensor will
describe the rate of change of T'. In flat space, it should reduce to the ordinary partial derivative 0.

We will define the covariant derivative axiomatically:

Let V be the tangent vector along a curve ~.
The covariant derivative of tensors along the curve satisfies:

1) Linearity: Vy(T'+S)=VyT + VyS

2) Leibniz: Vv(T & S) = (VvT) RS+T® (Vvs)

)
)
3) Additivity:  VyvyawT = fVyT + gV T
4) Action on scalars:  Vy(f) =V (f)
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5) Action on basis vectors:  Vge, = Fgaeu, where Vg =V, .

The numbers F’ﬁ‘ ., are called connection coefficients (or Christoffel symbols).

Say T'=T"e, and V = V"e,. The covariant derivative of T" is
VyvT = Vy(TFe,)
=Vy(T")e, +T"(Vve,) (using 2)
=V(T")e, + TV yve,e, (using 4)
=V"e,(T")e, + THV"V,, e, (using 3)
=V (0,T")ey + T*V*Ty ex  (using 5)
= VY@, T" + T, T )e,. (4.4)

The components of the resulting (1, 1) tensor are

v, T" =0, T" +TH 1* (4.5)

where we have defined (VT), " =V, TH.

Let us see what the transformation law (4.3) implies transformation of the connection coeffi-

cient. We write

VTV =8,T" + 1%, 1%

m ! , o
_ Ox 9 <8m T”)—I—I‘” Oox Ta

oz M\ dav wal gpa
= G T 8+ T G
- gj:‘;’;y (0T 4 T4, 1) — gf:gxxz v T + SZ, aii”;;y T + r;ﬁa,%w
In order for (4.3) to hold, we must therefore have
' dxt dx¥ 9z _, ozt dz®  9xV (@7)

Weol = Hgh dzv 9z Y Jzi 9z dzhdx
We see that I', are not the components of a (1,2) tensor.

What is the covariant derivative of a co-vector? To determine how the covariant derivative
acts on a covariant vector, w,, let us consider how it acts on the scalar f = w,T”. Using that
V.f = 0.f, we can write this as
Vu(w, TY) = 0p(w, TY)

= (Opwy)T" + wy (9, T") . (4.8)
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Alternatively, we can write

Vu(w,T") = (Vuw) TV 4+ w,(V,TY)
= (Vuw)T" + w, (0,T" +T},,T%), (4.9)

where we have used (4.5) in the second equality. Comparing (4.8) and (4.9), we get
(Vuwi )TV = (8pwy — T wa) T, (4.10)

where we have relabelled some dummy indices to extract the factor of 7" on the right-hand side.
Since the vector T¥ is arbitrary, the factors multiplying it on each side must be equal, so that

Vwy = Opwy — Ijwa | - (4.11)

Notice the change of the sign of the second term relative to (4.5) and the placement of the dummy
index.

The covariant derivative of the mixed tensor T*#, can be derived similarly by considering

f=Tr, VYW, This gives

V,TH, = 0,T", + T# T, —T% T",]. (4.12)

Again, pay careful attention to the signs and the placement of the dummy indices. Staring at
this expression for a little bit should reveal the pattern for arbitrary tensors

Levi-Civita connection

So far, we have not used the metric g, to define V. Now we will.

The Levi-Civita connection is the unique connection that is

1) torsion free: 7%, =T, —T§, =0

2) metric compatible: V,g,, =0

To derive the Levi-Civita connection, we expand out the condition for metric compatibility for
three different permutations of the indices:
vpg;w = 8pgw/ - F,))\,ug)\u - F;\yguk =0,
A A
V,ugup = 8ugup - Fuyg)\p - Fupgw\ = 07 (4'13)
vygpu = 8ugp,u - Fipg)\u - F;éugpA =0.

Subtracting the second and third expression from the first, and using the symmetry of the torsion-
free connection, we get

8pg,uu - augup - 6Vgp,u + 2F;>;ug)\p =0 (4'14)
Multiplying this by ¢?”, we find
1
FZV = §gap(augup + al/gp,u - 8p.g,uzz) . (4.15)

This is the same form of the Christoffel symbol that we discovered in Section 3.2 when we derived
the geodesic equation from the point particle action.
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From flat to curved spacetime

We have just seen that the covariant derivative of a tensor transforms like a tensor, while the
partial derivative does not. This means that relativistic equations must be constructed out of
covariant derivatives, not partial derivatives. A simple prescription to upgrade equations from
flat space to curved space is therefore to replace every partial derivative by a covariant derivative,
Oy —V H.G For example, the generalization of the inhomogeneous Maxwell equation, 0, F** = JH,
is simply

V,FF = JF, (4.16)

where the dependence on the metric is encoded in the covariant derivative and the associated
Christoffel symbols. This describes the dynamics of electromagnetic fields in general relativity.

Similarly, the conservation of the energy-momentum tensor in special relativity, d,T*" = 0,
becomes
V., T =0. (4.17)

Again, the covariant derivative depends on the metric and hence defines a coupling between the
matter and the gravitational degrees of freedom.

4.2 Parallel Transport and Geodesics

Having expanded our mathematical toolkit, we can now return to the problem of the parallel
transport of vectors. In flat spacetime, “parallel transport” simply means translating a vector
along a curve while “keeping it constant.” More concretely, a vector V*# is constant along a curve
x#(A) if its components don’t depend on the parameter \:

dvt  dx

S g ye = -
N ™ 0,V =0 (flat spacetime). (4.18)

We generalize this to curved spacetimes by replacing the partial derivative in (4.18) by a covariant
derivative. This gives the so-called directional covariant derivative. A vector is parallel
transported in general relativity if the directional covariant derivative of the vector along a curve
vanishes DVE  dg?

D = KVVVM =0 (curved spacetime). (4.19)
Although we have only written the equation for a vector field, an analogous equation applies

for arbitrary tensors. Writing out the covariant derivative, the equation of parallel transport
becomes qV 1s”
T
T VY =0 4.20
dA o dA ' ( )
which tells us that the components of the vector will now change along the curve and that this

change is determined by the connection I'%,.

Using parallel transport, we can give an alternative definition of a geodesic as the curve
along which the tangent vector dz#/d\ is parallel transported. This generalizes the notion of a

5Since the Christoffel symbols depend only on single derivative of the metric, it is possible to find coordinates—
called “Riemann normal coordinates”—so that they vanish at a given point, Pgﬁ (p) = 0. At that point p, covariant
derivatives reduce to partial derivatives and the physics becomes that of special relativity (as required by the
equivalence principle).
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straight line in flat space, which can also be thought of as the path that parallel transports its
own tangent vector. Substituting V# = dz*/d\ into (4.20), we get

2 b o v
d“x Mdac dx —ol, (4.21)

v - - =
Vv, v 0 = D2 + 15, N dn

which is indeed the same as the geodesic equation that we found before iff we identify I't, with
the Levi-Civita connection.

4.3 Symmetries and Killing Vectors

The importance of symmetries in physics cannot be overstated. General relativity is no exception.
We will see that the Einstein equations are rather complicated nonlinear differential equations
that can only be solved analytically in situations with a fair amount of symmetry.

Identifying all symmetries of a metric is a nontrivial task. So far, we have treated coordinate
transformations as a passive relabelling of the same points on a manifold. Let us now think of
coordinate transformations as active transformations between different points on the manifold.
In other words, the transformation x* +— Z#(x) takes a point with coordinates z* to a different
point with coordinates #. Nearby points are then connected by infinitesimal transformations:

at = 7 (z) = 2t 4 ot (4.22)
where we often write dz# = —VH. A symmetry of the metric can then be identified with an
invariance under an active coordinate transformation.

Recall that the metric transforms as

o oz oz

G (T) = G (T) = @@gpk(x). (4.23)

For the transformation in (4.22), the Jacobian matrix is

ozt ox’
@ = 6‘; — 6PVM = BET = 55 + 8uvp’ (424)

and the transformation of the metric becomes

Gur(T) = (Of, + 0V )(0) + 0V )gpa(@)

N (4.25)
= g () + 0,V g (x) + 0,V gur(z),
where we have dropped a term quadratic in V#. Writing
g;w(x) = g,uu(j + V) = g;w(j) + V>‘6/\glw(l’) ) (4'26)
we get
5guu = guu('%) - g,ul/((i') = V)\a)\guu + a,uvpgpu + 8VV)\g,u)\
= V)\a)\g;w + au(vpgpu) + 8V(V>\gu>\) - Vpa,ugpu - V)\aug;v\ (4 27)

= VoV + VoV + TV + T8, Va = VN0Ougua + 0ugur — Orgu)
=V,V, +V,V,.
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‘We have therefore found that

894 = VVi + ViV . (4.28)

A transformation is a symmetry is this change of the metric vanishes, dg,,, = 0. The infinitesimal

transformation parameters must then obey the Killing equation

V.V + V.V, =0]. (4.29)

Roughly, the metric then looks the same at each point along the direction of V#, which is then
called a Killing vector.

Although it can be hard to find all Killing vectors of a given metric g,,, often it is possible to
write down some Killing vectors by inspection. For example, if the metric doesn’t depend on a
coordinate %, then O, is a Killing vector (can you show this?). This is related to the fact that
geodesic equation implies a conserved quantity for each ignorable coordinate (see Section 3.2).

Example Consider three-dimensional Euclidean space R3, with metric
ds® = da? + dy? + d2?. (4.30)

Since the metric components are independent of z, y and 2z, we immediately have the three
Killing vectors X = 0, Y = 0y and Z = 0., with components

X* = (1,0,0),
Y* =(0,1,0), (4.31)
7" =(0,0,1).

These Killing vectors clearly represent the invariance of the metric under translations along
the x, y and z directions. In addition, we expect to find three Killing vectors corresponding
to rotations around the x, y and z axes. To find them, it is useful to go to polar coordinates:

x =rsinfcos ¢,

y =rsinfsin ¢, (4.32)
z=rcosb.
where the metric takes the form
ds® = dr® 4+ r*d6* + % sin® 6 > . (4.33)

Since the metric components are independent of ¢, one Killing vector is R = 04, which
describes rotations around the z-axis. In Cartesian coordinates, this Killing vector is

R=—-y0,+20, = R'=(-y,z,0). (4.34)
By permuting the coordinates, we obtained all roational Killing vectors:
R = (—y,z,0),
SH = (z,0,—x), (4.35)
T" = (0,—2,y) .

You should check that the above vectors indeed solve Killing’s equation.
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Emmy Noether has taught us that for every continuous symmetry there is a conserved quantity.
Let us know see what the conserved quantities corresponding to the Killing vectors for the metric
are. Above we have seen that a free massive particle with four-momentum P* = mdax*/dr
satisfies the following geodesic equation

P'V,P*=0. (4.36)

Let K" be the Killing vector of the metric g,,,. We then claim that Q = K*P, is a constant
along the geodesic. The proof is straightforward:

D(];/\P”) — PV, (KYPB,) = P'P'V,K, + (P"V,P")K,
1
— §PHPV(V’LLKZ/ _|_ VVKH) (437)
=0.

Note that we obtain one conserved quantity () for each Killing vector K*. Some of these conserved
quantities should be very familiar. The Killing vector of time translations is Ky = 0, with
components K# = (1,0,0,0), and the corresponding conserved quantity K &)) P, = Py is the energy
of a particle. Similarly, the Killing vectors of spatial translations are K ;) = 0;, which imply the
conserved momentum F;. Finally, the Killing vectors corresponding to spatial rotations, given in
(4.35), lead to conserved angular momentum.

4.4 The Riemann Tensor

An important property of the parallel transport of a vector on a curved manifold is that it depends
on the path along which the vector is transported. This is illustrated in Fig. 22 for the case of
a two-sphere. Consider a vector on the equator, pointing along a line of constant longitude.
We wish to parallel transport this vector to the North Pole. We first do this along the line of
constant longitude. Alternatively, we can first parallel transport the vector along the equator by
an angle § and then transport it to the North Pole along the new line of constant longitude. As
you see from the figure, the two vectors at the North Pole are not the same, but point in different
directions.

This path dependence of the parallel transport gives another way to diagnose whether the
spacetime is curved. Consider a parallelogram spanned by the infinitesimal vectors AP and
B (see Fig.22) and imagine parallel transporting a vector V#. From the equation of parallel
transport (4.20), we have that the change of the vector along a side dz* is

SVH = —T¥ V¥Sar . (4.38)

On “path 1”7 we parallel transport the vector first in the direction A” and then along B, while
on “path 2”7 we reverse the order (giving the gray path in Fig.22). Using (4.38), we get

OVl = =Tl (2)V" () AP — T, (x + AV (x + A) B,

OVl = =Tl (x)V¥(2)B” — Tl (x + B)V"(z + B)A”,

(4.39)
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Figure 22. Path dependence of parallel transport. The example on the left shows the parallel transport of
a vector on a two-sphere. Starting with a vector on the equator, pointing along a line of constant longitude,
the direction of the vector at the North Pole clearly depends on the path along which it was transported.
The diagram on the right defines an infinitesimal parallelogram in spacetime. If the spacetime is curved
then the parallel transport along two different paths will not give the same vector.

and difference is

— iz H
SVH =8V — oV
1108 Ve K oyv
_ 0w, V") )BUAp _ o, VY) )A"B", (4.40)
0x° 0x°

where we have Taylor expanded the arguments for small A” and B”. Swapping the dummy
indices on the second term, p +> o, and differentiating the products, we find

SV = (9,T8 V¥ +Th 8,V¥ — ,T1 V"V — Tl 8,V")APB . (4.41)

Using (4.20) again, we have 0,V" = —I'/, V* and hence (4.41) becomes

SV = R, VY APBY| (4.42)

where we have defined the Riemann tensor

RFypo = 0,1%, — 05Th, +Th T5, —THT), | (4.43)

The Riemann tensor will become our good friend. Note that we have mot used the metric to
define the Riemann tensor. So far, the expression (4.43) for an arbitrary connection. For the
Levi-Civita connection, it because a function of the metric.

An alternative way to discover the Riemann tensor is consider the commutator of two covariant
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derivatives [V, V,]. Consider acting with this on a vector field V*. This gives

IV, V VP =V, V, VP -V, V, VP
= 0u(V,VP) =), VaAVP + T4, V, V7 — (> v)
= 00, VP + (0,I0,)V7 + 10,0,V =T, 0\V? — T, T4 V°
+ 10,0,V +T0, TV — (45 v)

pno- v

= (0,10, — 0, T0, + 10T, —T0, Th )V =217, VAV, (4.44)

In the last step, we have relabeled some dummy indices. We have therefore found that

[V, VU IVP = R, VT — T, VAV (4.45)

where T2 v is the torsion tensor. For the Levi-Civita connection, the torsion vanishes and we get

V., Vo, ]VP = RP,,, V7| (Levi-Civita) . (4.46)

We see that the Riemann tensor determines the degree to which covariant derivatives don’t
commute.

It is also instructive to give index-free definitions of the tensors introduced in this chapter.

The torsion tensor can be thought of as a map from two vector fields to a third vector field:
T(X,Y)=VxY -VyX — [X,Y], (4.47)

where [X,Y] is the commutator.

Using that Vx = X#V,, you should confirm that the components of the torsion tensor are

V:F/\ _1’\)\

o Jus s in our previous definition of the torsion.

The Riemann tensor is a map from three vector fields to a fourth vector field:

R(X,Y)Z =VxVyZ —-VyVxZ — V[Xy}Z. (4.48)

In components, (4.48) implies
RP 5 XHYVZ7 = XAVN(YIV, ZP) — YAVA(XTV,ZP) — (X20YT — Y O XNV, Z° . (4.49)

By expanding the covariant derivatives, you should show that this leads to our previous definition
of the Riemann tensors in (4.43).
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Symmetries of the Riemann tensor

Only 20 of the 4* = 256 components of R*,,, are independent. This is because the Riemann
tensor has a lot of symmetries that relate its different components. These symmetries as easiest
to present for the Riemann tensor with only lower indices R0 = gMAR)‘VpU. We then have

R,LLI/pO' = _Rl/upaa

Ryvpe = —Ruvop

R,uz/pa = Rpaul/ )
Rm/pa + Rupou + Rp,al/p =0.

In words: the Riemann tensor is anti-symmetric in its first two indices [(4.50)] and anti-symmetric
in its last two indices [(4.51)]. Moreover, it is symmetric under the exchange of the first two indices
with the last two indices [(4.52)]. Finally, the sum of the cyclic permutations of the last three
indices vanishes [(4.53)]. Proofs of these identities can be found in Sean Carroll’s book.

In addition to these algebraic symmetries, the Riemann tensor satisfies an important differ-
ential identity called the Bianchi identity. This identity states that the sum of the cyclic
permutations of the first three indices of V\R,,,, vanishes:

V)\Rw,pg + VVRAupo' + V;LRV)\/)U =0. (4.54)
This is the analog of the homogeneous Maxwell equation 0xF,, + 0, F\, + 0, F,\ = 0.

Ricci tensor and Ricci scalar

Given the symmetries of the Riemann tensor, the unique contraction is the Ricci tensor

R,uu = R)\,u)\u = 8)\Ff\w - aI/Ff;)\ + FﬁpFZu - FZ,\Fzép ) (455)

where the second equality follows from the definition of the Riemann tensor. Given the Christoffel
symbols, it is usually quicker to compute the Ricci tensor directly, rather than first evaluating
the Riemann tensor.

The trace of the Ricci tensor is the Ricci scalar:

R=R'Y=g"R,,|. (4.56)

The Ricci scalar is a simple measure of the local curvature of the spacetime.

Example Consider a 2-sphere with metric
ds® = (*(d6* + sin? 0 d¢?) . (4.57)
The nonzero Christoffel symbols are

F2>¢ = —sinfcosf,

4.58
F&zfiezco‘cﬂ. ( )
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From this, we can compute

= (sin? @ — cos? @) — (0) + (0) — (— sin @ cos ) (cot 0)
=sin’6. (4.59)

Lowering an index, we get

Ropos = 9orR> g0
= 99939¢9¢
= (*sin?9. (4.60)

All other components of the Riemann tensor are either zero or related to this one by symme-
tries. The components of the Ricci tensor then are

Roo = ¢°Ryppn = 1,
R9¢ = ng.g =0, (4.61)
Ryy = 996R9¢9¢ — sin?4.

The Ricci scalar is 9
672 .

By dimensional analysis, we should have expected the Ricci scalar to be proportional to 1/¢2.

R= geeRgg + g¢¢R¢¢ = (4.62)

4.5 Geodesic Deviation

In Euclidean space, parallel lines will never meet. Similarly, in Minkowski spacetime, initially
parallel geodesics will stay parallel forever. In a curved space(time), on the other hand, initially
parallel geodesics do not stay parallel. This gives us another way to measure the curvature of
the spacetime.” In this section, we will study the relative acceleration of two test particles, first
in Newtonian gravity and then in GR.

Consider two particles with positions x(¢) and x(¢) + b(t). In Newtonian gravity, the two
particles satisfy

A2zt 4 ,

CE 5 (]

. ] (4.63)
d* (' 4 b') i (g L 1d
EE T = 00 +v). (4.64)

Subtracting (4.63) from (4.64), and expanding the result to first order in the separation vector b,

"Note that following the motion of a single test particle is not enough to measure spacetime curvature, since
the particle remains at rest in a freely falling frame. The motion of at least two particles is therefore needed to
detect curvature.
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Figure 23. Evolution of two geodesics with separation B* in a curved spacetime. The relative acceleration
of the geodesics depends on the Riemann tensor and is hence a measure of the spacetime curvature.

we get

271 ) )
% = 0,00 |, (4.65)

We see the relative acceleration of the particles is determined by the tidal tensor® 0;0;®. The
Poisson equation relates the trace of this tidal tensor to the mass density

V2 = §0,0;® = 4nGp. (4.66)

We will use this connection between the tidal tensor and the Poisson equation as an inspiration
to guess the Einstein equation for the gravitational field.

Let us now find the equivalent of (4.65) in GR where it is called the geodesic deviation
equation. The algebra will be a bit more involved, but the physics is the same as in the
Newtonian treatment. The analog of the tidal tensor will give us a local measure of the spacetime
curvature.

Consider two geodesics separated by an infinitesimal vector B* (see Fig.23). We define the
“relative velocity” of the two geodesics as the directional covariant derivative of B* along one of

the geodesics
DB* dB#

Vi = =U"V,B" =~ + T}, U"B°, (4.67)
T

T

where U* = dz# /dr. Similarly, the “relative acceleration” is

D2BH dve
Al = o = UMYV = e 4 TR UV (4.68)

Using the geodesic equation and the definition of the covariant derivative, we can compute the
relative acceleration. After some work (see the box below), we find

D?B#
D2

—R*,,, U"U’B?| (4.69)

where R, ,; is the Riemann tensor. We see that the Riemann tensor is the analog of the tidal
tensor in Newtonian gravity.

8This is called the tidal tensor because of the role it plays in explaining the tides on Earth.
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Proof Substituting (4.67) into (4.68), we get

dve
o o B
A% = S 4 T UV
d (dB* dB7
=— ( o FgWUﬁB7> +1g,U° (dT + FgeUéBf> (4.70)
d*B®

dr'¢ dUP dBY
BY 118 B
+ ——U BV+I“§7 I B”—FQI‘g,YU

re 1 ululpe.
dr? dr dr 6y de

The derivatives of the Christoffel symbol and the four-velocity can be written as

(o7

dr
?ﬁ” = U%9;T%, (4.71)
dUB

% = I, UUe, (4.72)

where (4.72) follows from the geodesic equation. We therefore get

_ d*B*~

A% = —— + TG U5@+(ara — 5T +T4.15,) UPU° B (4.73)
dr2 By dr 61 By 0B+ ey Bet &y s .

where I have relabelled some dummy indices to extract the common factor UPU®BY from
three of the terms. To replace the derivatives of B%, we note that X*(7) + B%(7) obeys the
geodesic equation

d*( X+ B*)
dr?

d(X? + BP) d(X" + BY)
dr dr

+T%,(X° + B°) =0. (4.74)
Subtracting the geodesic equation for X*(7) and expanding the result to linear order in B%,
we get

d? B>

BY
dr? dr

ore Uh
t 2By dr

= —0sT%, B°UPU"
= —0,1%;U°U°B", (4.75)

where I relabelled some dummy indices in the second line. Substituting this into (4.73), we
find

A% = — (0,195 — 0sTY, + T2, —T4.T5. ) UU B, (4.76)

= R%qs
which confirms the result in (4.69).

In the local inertial frame of a freely falling observer, with four-velocity U* = (1,0,0,0), the
geodesic deviation equation (4.69) becomes
d*B"

dr?

For the static, weak-field metric (1.13), we have Rigjo = 9°9;® and (4.77) reduces to (4.65).

= —RMy,0B". (4.77)
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5 The Einstein Equation

We will determine the Einstein equation in two different ways. First, we will “guess” it. Then,
we will construct an action for the metric and show that corresponding equation of motion leads
to the same Einstein equation.

5.1 Einstein’s Field Equation

We are searching for the relativistic generalization of the Poisson equation
V2 = 4nGp. (5.1)

We would like to write this equation in tensorial form, so that it is valid independent of the
choice of coordinates. We know that in relativity the energy density is the temporal component
of the energy-momentum tensor, p = Tyo (see Section A.4). This suggests that 7}, should
appear on the right-hand side of the Einstein equation. Moreover, we have also seen that the
relativistic generalization of the gravitational potential ® is the metric g, (see Section 1.3).
On the left-hand side of the Einstein equation, we therefore expect a symmetric (0,2) tensor
including second-order derivatives of the metric, ~ [V?g],,. A naive guess would be to act with
the d’Alembertian operator V°V, on g,,. This doesn’t work because V;g,,, = 0. To infer the
correct object, we recall the right-hand side of the Poisson equation is the trace of the tidal tensor,
0;0;®, and that the relativistic generalization of the tidal tensor is the Riemann tensor, R*,,,
(see Section 4.5). This suggests that the trace of the Riemann tensor would be an interesting
object. Taking the trace means contracting the upper index with a lower index. The symmetries
of the Riemann tensor imply that there is a unique way of doing so, which leads to the Ricci
tensor

R/,u/ = R/\u)\u = a}\]‘_‘/);y - az/ri;\,)\ + Fﬁprzy - FZ)\Fﬁp : (52)

This has all the properties with want: it is a symmetric (0, 2) tensor with second-order derivatives
acting on the metric.
A first and second guess

Einstein’s first guess for the field equation of GR therefore was
?
R, = kT, (5.3)

where « is a constant. However, this doesn’t work because, in general, we can have V*R,,,, # 0,
which would not be consistent with the conservation of the energy-momentum tensor, V#T),,, = 0.
To see this, we consider the following double contraction of the Bianchi identity (4.54):

0= ggygp)\ (V)\Ruupa + VVR)\,upo + vuRuApo’)
= VPR, — V,R+ V"R, (5.4)

where R = R¥,, = g"”R,,, is the Ricci scalar. This implies that

EVVR, (5.5)

VF Ry =
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which doesn’t vanish, except in the trivial case where R (and hence T' = ¢"T},,) is a constant.

The problem is easy to fix: we simply have to note that (5.5) can be written as

1
% (RW - QQWR> —0. (5.6)

This suggests an alternative measure of curvature, the so-called Einstein tensor

1
G,ul/ = R,ul/ - 7g}Ll/R

> (5.7)

which is consistent with the conservation of the energy-momentum tensor. Our improved guess
of the Einstein equation therefore is

Gy = kT, . (5.8)

To show that this is the correct equation, we still have to show that it reduces to the Poisson
equation (5.1) in the Newtonian limit.

Newtonian limit

To save a few lines of algebra, it is convenient to first write the Einstein equation in a slightly
different form. Contracting both sides of (5.8) gives

R = —kT, (5.9)

where we used that we are living in four spacetime dimensions. Substituting this back, we get
the trace-reversed Einstein equation

1
R, =k <TW — 2gWT> . (5.10)

In the Newtonian limit, the energy-momentum tensor take the form of a pressureless fluid, with
Too=pand T = ¢"0T 00 =~ —Tpo = —p. Note that we have considered p to be small (spacetime
reduces to Minkowski in the limit p — 0), so that we can use the unperturbed metric at leading
order. The temporal component of (5.10) then is

1
R[)() = ilip. (5.11)

We would like to evaluate Rgg in the static, weak-field limit, where the metric can be written as
Guv = Nuv + by, where hy,, is a small, time-independent perturbation, cf. (3.26). The temporal
component of the Ricci tensor is

Roo = RiOiO = &I‘BO — 801120 + F;)\PSO - FB)\P?O

. 5.12

In the first line, we used that R%ypp = 0 and then wrote out the definition of the Riemann
tensor (4.43). In the second line, we dropped the terms of the form I'> which are second order in
the metric perturbation, because the Christoffel symbols are first order. We also dropped E?OF;:O
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because the metric perturbation is assumed to be time independent. The relevant Christoffel
symbol is

. 1 .
00 = 59”@09% + dogox — Orgoo)
— Lsign
= 597 djh0o
where we have again dropped the terms involving time derivatives. At first order in the metric
perturbation, the temporal component of the Ricci tensor then is
1
Roo = —§V2hoo, (5.13)
and equation (5.11) becomes
V2hoo = —kp. (5.14)
Recall that the Newtonian limit of the geodesic equation implied that hgy = —2®, cf. (3.30).
We also discovered the same relation in our discussion of the equivalence principle, cf. (1.13).
Equation (5.14) therefore reproduces the Poisson equation (5.1) if k = 87G.
The Einstein equation

The final form of the Einstein equation then is

Gy =81G Ty | (5.15)

In abstract form, this is one of the most beautiful equations ever written down. It describes
a wide range of phenomena, from falling applies and planetary orbits to the expansion of the
universe and black holes.

Note that (5.15) are ten second-order partial differential equations for the metric. In fact,
because the contracted Bianchi identity, V#G,, = 0, imposes four constraints, we have only six
independent equations. This counting makes sense since there are four coordinate transformations
and hence the metric has only six independent components. The Einstein equation are nonlinear
functions of the metric which makes solving them a complicated task.

5.2 Einstein-Hilbert Action

An alternative way of deriving the Einstein equation is from an action principle. The action must
be an integral over a scalar function. Moreover, this scalar function should be a measure of the
local spacetime curvature and be at most second order in derivatives of the metric. The unique
such object is the Ricci scalar’ and the corresponding Einstein-Hilbert action is

(5.16)

S—/d4x\/—gR

where g = det g,,,, is the determinant of the metric. Under a transformation z# — 2+ | we have

/
dz — da’ = det (889;) d'z, (5.17)

9Gravity as an effective field theory also contains higher-order curvature terms such as R? or R, R"”. These
are only important at very short distances.
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where the determinant factor is called the Jacobian of the transformation. Since

ozt da¥ dz\”
det g, — det g,y = det ((95“, &fy,gw> = det (8:1?) det g, (5.18)

this Jacobian is cancelled by including the factor of v/—g in the integral. The factor of /—g was
introduced so that the volume element d*z,/—g¢ is invariant under a coordinate transformation
(see Appendix B for details on the topic of integration on curved manifolds). In Cartesian

coordinates, for example, we have \/—¢g d*z = dt dz dy dz, while in polar coordinates this becomes
r2sin 6 dt dr df d¢.

The Einstein equation then follows by varying the action with respect to the (inverse) metric.
Writing the Ricci scalar as R = g R,,,,, we have

68 = /d4x ((0vV=9)9"" Ry + V=9 09" Ry + V=9 9" 6R,1)) - (5.19)

With some effort, it can be shown that the last term is a total derivative g0 R, = V,X#, with
XH = gPY§Th, — g" 6T, and can therefore be dropped without affecting the equation of motion.
To evaluate the first term, we use the fact that any diagonalizable matrix M obeys the identity

In(det M) = Tr(In M) . (5.20)
The variation of this identity gives

§(det M) = Te(M 16 M) . (5.21)

det M
Taking M to be the metric g,,, so that det M = det g, = g, we get

69 = 9(g""d9,)

= —9(9ud9"") (5.22)
where the second equality follows from the the variation of g,, " = &}, (<= g""0g, = — g dg"").
Hence, we find

0/—g = 1 )
g
Y
2\/_—g Guv0g
1

— —5\/TQQMV59“V- (5.23)

Substituting this into (5.19), we find
1
68 = / d*zy/—g <RW — ng,fz) Sgh . (5.24)

For the action to be an extremum, this variation must vanish for arbitrary dg#”. This is only the
case if G/, = 0, which is the vacuum Einstein equation.
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5.3 Including Matter

To get the non-vacuum Einstein equation, we add an action for matter to the Einstein-Hilbert
action. The complete action then is

S = i /d”‘x\ﬁ—gR + Sur, (5.25)

where the constant x allows for a difference in the relative normalization of the gravitational
action and the matter action. Varying this action with respect to the metric gives

1 1
5S = 5 / d*z/—g (HGW - TW) sgh . (5.26)

where we have defined the energy-momentum tensor as

2 0Su
V=g 69+

The action (5.25) therefore has an extremum when the metric satisfies (5.8): G, = kT),,. Fixing

(5.27)

Ty

the constant x in the same way as before then gives the Einstein equation (5.15).

In Section 4.3, we considered an infinitesimal coordinate transformation x# — x* — V* and
showed that the metric changes as dg,, = V.V, + V,V,,. Substituting this into (5.24), we get

1
68 = /d4x\/7—g (HG - TW> A

. (5.28)
= — /d4x\/jg (K/VMGHV - vuT,UJ/> VV’

where, in the second line, we have integrated by parts. The action should be invariant under
any change of coordinates (this is sometimes called the diffeomorphism invariance of GR). In
order for 05 to vanish for all V¥, we require that the term in bracket vanished. Since V#G, =0
(by the Bianchi identity), we therefore get

VAT, =0, (5.29)

i.e. the energy-momentum tensor must be covariantly conserved. It all hangs together.

In your special relativity education, you should have encountered several forms of energy-
momentum tensors. I will very quickly review some of the most important ones.

e Scalar field The action of a massive scalar field is
1 1
S = /d% vV—g <—29Wvu¢vy¢ — 2m2¢2) . (5.30)

Varying this action with respect to the metric gives the corresponding energy-momentum
tensor

1
Ty = V¢V — 59w (VPOV 0 + m*¢?) . (5.31)

The conservation of T}, follows from the Klein-Gordon equation for the field.
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e Electromagnetic field The Maxwell action is

1
S g _Z /d4 /_gg/'LUgVTFo—TFHV . (5.32)
Varying this action with respect to the metric gives
1
T;,LV - ngFM,DFI/O' — zgul/FpUFpU . (533)

It is easy to show that T}, is covariantly conserved when the Maxwell equations are obeyed.

e Perfect fluid The energy-momentum tensor of a perfect fluid, with energy density p,
pressure P and 4-velocity U#, with U*U,, = —1, is

T = (p+ P)U*U" + Pgh". (5.34)
This energy-momentum tensor plays an important role in cosmology.

5.4 The Cosmological Constant

There is one other term that could be added to the left-hand side of the Einstein equation
which is consistent with the local conservation of 7},,, namely a term of the form Ag,, , for some
constant A. Adding this term doesn’t affect the conservation of the energy-momentum tensor,
because the covariant derivative of the metric is zero, V¥#g,,, = 0. Einstein, in fact, did add such
a term and called it the cosmological constant. The modified form of the Einstein equation is

|Gy + Mg = 87G T |- (5.35)

It has also become modern practice to identify this cosmological constant with the stress-energy
of the vacuum (if any) and include it on the right-hand side as a contribution to the energy-
momentum tensor. The action leading to (5.35) is

1
S=— /d4x\/—g(R —2A)+ S (5.36)
167G

We see that the cosmological constant corresponds to a pure volume term in the action.

5.5 Some Vacuum Solutions

In general, the Einstein equation is hard to solve. A few exact solutions nevertheless exist in
situations with a large amount of symmetry. We will first consider the vacuum Einstein equation
with a cosmological constant. Contracting both sides of (5.35) with the metric, we get R = 4A
and hence

RMI/ = Ag,ulf : (5'37)

Let me mention a few famous solutions to this equation.
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Minkowski space

First, we set A = 0. Reassuringly, the Minkowski spacetime,
ds* = —dt? + dx?, (5.38)

satisfies the vacuum Einstein equation R, = 0. In Cartesian coordinates, the Christoffel symbols
vanish identically and so do therefore the Ricci tensor. In polar coordinates, the Christoffel
symbols do not all vanish. However, a tensor that vanishes in one frame must vanish in all
frames, so that Ricci tensor will still be zero.

Schwarzschild solution

In Chapter 3, we studied geodesics in the Schwarzschild geometry around a spherically symmetric
object of mass M. We pulled the Schwarzschild metric out of the hat. We will now derive it as
a solution to the vacuum Einstein equation, R, = 0. We will further discuss the properties of
the Schwarzschild solution in Section 6.

We assume that beside being spherically symmetric, the spacetime is “static.” In fact, in the
Problem Set you will prove Birkhoff’s theorem which states that any spherically symmetric
solution of the vacuum field equations must be static.

To preserve spherical symmetry, it is most convenient to work in polar coordinates z# =
(t,r,0,¢). The most general ansatz for a static, spherically symmetric line element then is

ds? = =22 4 €260 qr2 4 (2402 . (5.39)

We have written the metric coefficients in terms of exponents to preserve the signature of the
metric. For a static spacetime, these coefficients are independent of time, and because of spherical
symmetry they depend only on the radial coordinate 7. Mixed terms like dtdz? are also forbidden
for a static spacetime, since they aren’t invariant under the inversion ¢t — —t.

To simplify the angular part of the metric, it is useful to redefine the radial coordinate as

F=e' "y, (5.40)
The associated basis one-form is
dr = <1 + TZZ) eldr, (5.41)
and the metric (5.39) becomes
ds® = —e2Mat? + <1 + 7“22) B =072 4 72402, (5.42)

where r should be read as a function of 7. Since the coefficient functions were arbitrary to begin
with, nothing stops us from performing the following relabelings:

r—=r,

dy\~? 28(r)—2+(r) 28
1+ r—d e N eP
T

(5.43)
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The metric (5.42) then reads
ds® = M ar? 4 2P ar? 4 2402, (5.44)

This metric will be our starting point for trying to solve the vacuum Einstein equation, R, = 0.

Plugging (5.44) into the definition for the Christoffel symbols, we get the following non-zero

components
Il = 0.« Iy, = @99, Iy, =00
1 1
0 -2
Trg = o = —re”?’ re, = - (5.45)
0
= —rePsin20 T = —sinfeosd TY, = .
o re 7 sin b sin 0 cos 06 = S0

Substituting these into the definition of the Riemann tensor, we then find
RtTtr = 0ra0,3 — 3304 - ((3,%)4)2
Rlow = —re 280,01

Rt¢t¢ = —re 2P sin? 09,a

5.46
R g9 =re 2P0, (546)
R 44 = re 2P gin? 00,5
R9¢9¢ =(1- 6_25) sin 6.
Contracting this with the inverse metric, we get the Ricci tensor
2
Ry = e2@=h) [83a + (8ya)? — 8,00, + =8,
r
2
Ry = —0%a — (0pa)? + 0,00,8 + ~0,8 (5.47)

Rop = e~ [r(&ﬂ —da)— 1] +1
R¢¢ = SiIl2 9R99 .

To satisfy the vacuum Einstein equation, these components of the Ricci tensor must vanish. Since

Ry and R, vanish independently, we can write
2
0=e*PYRy + R, = ~(Ora+0,5), (5.48)

so that a« = —fp + ¢, where ¢ is an arbitrary constant. This constant can be absorbed by a
rescaling of the time coordinate, t — e~ ¢t, after which we have

a=-0. (5.49)

We have reduced the number of free functions from two to one. Next, we consider Rgy = 0, which

now becomes
2roa+1)=1 = 9 (re**)=1. (5.50)
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Integrating the last expression, we find

2
=1-— 5.51
e =1 (5.51)

where Rg is an arbitrary integration constant. It is straightforward to check that the function
in (5.51) also solved Ry = 0 and R,, = 0. Rather remarkably, we have therefore found an exact
solution to the Einstein equation.

What is the physical meaning of the constant Rg? Recall from (1.13) that in the temporal
component of the metric can be written as

gu = —(1+22), (5.52)

where ® is the Newtonian potential. For a point mass, we have

P = _GTM , (5.53)

and hence we identify the Schwarzschild radius as Rg = 2GM. The final form of the
Schwarzschild metric then is

M 2GM\ t
ds? — — <1 _ 2G> a8 + <1 - G) dr? 4+ r2d0? | | (5.54)
T T

At large distances, v > Rg, the metric reduces to the Minkowski metric and the spacetime is
asymptotically flat.

De Sitter space

Next, we consider the case of a positive cosmological constant, A > 0. Motivated by our discussion
of the Schwarzschild solution, we try the ansatz

The corresponding components of the Ricci tensor were given in (5.56):

2
Ry = e [8304 + 2(&&)2 + rara} = —¢'R,,,

(5.56)
Ryy = sin? # [1 — e (1 + 27“8,41)] = sin?ORyp .
This satisfies R, = Ag,, if
2
OPa+2(0.a) + Z0ra = —e22A
r (5.57)
1— e (1 n 27“8Ta) — 2.
It is easily confirmed that the solution which satisfies both of these conditions is
2
,
2 =1-— i (5.58)
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where R? = 3/A. The corresponding metric is

—1
ds* = — 1—ﬁ de? + 1—ﬁ dr? + r2dQ3 (5.59)
B R? R? 2 ‘

This solution is called de Sitter space in static patch coordinates. The static patch coordinates
cover only part of the de Sitter geometry, namely that accessible to a single observer which is
bounded by the cosmological horizon at » = R. Alternative coordinates that cover the whole
space are the so-called global coordinates

ds®> = —dT? 4+ R? cosh?(T/R) dQ3, (5.60)

where dQ§ = dyp? + sin? 1 dQ2 is the metric on the unit three-sphere. In these coordinates, we
think of de Sitter space as an evolving three-sphere that start infinitely large at T — —o0, shrinks
to a minimal size at T" = 0 and then expands to infinite size at T — +o0o. In applications to
inflation, we often use the planar coordinates

ds? = —di? + 2/ B(dr? + 12d02). (5.61)

which cover half of the global geometry. This describes an exponentially expanding universe with
flat spatial slices (although this time dependence only becomes physical when the time translation
invariance of de Sitter space is broken by additional matter fields like the inflaton).

Anti-de Sitter space

Finally, we take the cosmological constant to be negative, A < 0. The corresponding solution is
anti-de Sitter space

2 2\ 1
r r
ds? = — (1 + R2> dt* + <1 + RQ> dr? 4 r2dQ? |, (5.62)
where R? = —3/A. This spacetime plays an important role in toy models of quantum gravity.
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6 Black Holes

One of the most remarkable predictions of GR is the existence of black holes. These are regions
of spacetime from which nothing, not even light, can escape. Figure 24 shows the stunning image
of the black hole at the center of the galaxy M87. The picture was taken by the Event Horizon
Telescope (EHT), a global network of eight radio telescopes. The image shows light from the hot
gas swirling around the black hole. The light is highly bent by the strong gravity near the black
hole’s event horizon. The dark central region is the black hole’s shadow.

Figure 24. Image of the shadow of the black hole at the center of M87.

In this chapter, we will discuss the fascinating physics of black holes. I will follow closely the
excellent lecture notes by David Tong, which I recommend for further details.
6.1 Schwarzschild Black Holes

In Section 5.5, we derived the metric around a spherically symmetric object of mass M:

2GM 2GM\
ds? = — (1 — G> dt? + (1 — G) dr? + r?(d#? + sin? 0 d¢?) . (6.1)
T T

This spacetime has some striking properties that we will now discuss.

Singularities
Looking at (6.1), we note the special points » = 0 and r = 2GM where the metric coefficients g**
and g, blow up. How worried should we be about this?

We should first note that the metric coefficients are coordinate dependent, so they are not an
unambiguous way to diagnose a pathology of the spacetime. As a trivial example, consider the
metric of R?:

ds® = dz? + dy? = dr? + 12d6?. (6.2)
While there is no problem in the Cartesian coordinates (z,y), in polar coordinates (r, ) we have
g% = r=2 which blows up for » — 0. There is nothing wrong with the point » = 0 and the

singularity just reflects a limitation of polar coordinates.
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We need a more coordinate-independent way to study the Schwarzschild geometry at r = 0
and r = 2GM. The most straightforward way to do this is to look at scalar quantities that don’t
depend on the choice of coordinates. If these also blow up, we are really in trouble.

The simplest scalar we could consider is the Ricci scalar R = g"”R,,,,. However, because the
Schwarzschild metric is a solution of the vacuum Einstein equation, R,, = 0, this necessarily
vanishes, R = 0. The same holds for R,, R*”. The simplest nontrivial curvature invariant is
therefore the square of the Riemann tensor, also called the Kretschmann scalar, RF?7 R, 5.
For the Schwarzschild solution, this evaluates to

48G2 M2

Ly po _
R Ryype = —

(6.3)

We see that there is no singularity in the spacetime curvature at the Schwarzschild radius, r =
2G M, but there is one at 7 = 0. Nevertheless, as we will see below, r = 2G M is still an interesting
place in the spacetime.

Event horizon

As we will see below, the Schwarzschild radius r = 2GM is a point of no return. An object
compressed to a size smaller than its Schwarzschild radius will form a black hole. The surface at
r = 2GM is called the event horizon. Anything that enters the event horizon is trapped and
can never re-emerge.

Let’s put in some numbers. Consider an object of the mass of the Earth, Mg = 6 x 10?4 kg.
The corresponding Schwarzschild radius is Rg g = 2GMg/c? = 8.9mm. A black hole of the mass
of the Earth can therefore be drawn to scale:

Of course, this is much smaller than the actually size of the Earth, Rg =~ 6400 km, which is why
the Earth is not a black hole. Similarly, taking the mass of the Sun, My = 2 x 103 kg gives
Rs o ~ 3km compared to Rg ~ 7 X 10° km for the radius of the Sun.

For ordinary planets or stars, we have Rg < R, so that the would-be event horizon is not
part of the spacetime. In order for a black hole to form, the mass must be compressed into
an incredibly small region of space. This can happen when a star with a mass above the Tol-
man—Oppenheimer—Volkoff limit, M > 4 M), runs out of fuel and collapses. (Stars with smaller
masses will become white dwarfs or neutron stars.) We also believe that there are supermassive
black holes, with masses up to M ~ 10' M, at the centers of most galaxies.

Near horizon limit: Rindler space

In the rest of this chapter, we will study the black hole geometry in more detail. We will start by
looking at the geometry near the horizon. To zoom in on this part of the spacetime, we define

r=2GM +n, (6.4)
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with 0 < n < 2GM. (Taking n > 0 means that we are describing the spacetime just outside the
Schwarzschild radius.) In this limit, we have

2GM 2GM n \! n 9
1-— =]-—=1—(14+ —— N —
r 2GM + 1 ( + 2GM) aGar O (6.5)
r? = (2GM +n)* =~ (2GM)* + O(n),
so that the Schwarzschild metric becomes
2GM
ds? = — a2 + 2 a2 4+ (26 M)2d0? . .
s 5C I + ” n° + (2GM) (6.6)
SQ

Rindler space

We see that the metric has separated into a two-sphere of fixed radius 2GM and a 141 dimensional
Lorentzian geometry called Rindler space. Defining the change of variable

p® =8GMn, (6.7)

the metric of the Rindler space becomes

2 P \% .2 2
ds? = (KM) dt? + dp?|. (6.8)

In this geometry, an observer at constant p has a finite acceleration a* = v’V u*, where u* =
dzt/dr is the four-velocity. (See Midterm Exam.) This makes sense: an observer sitting at
constant p (and hence constant r) must accelerate to avoid falling to the black hole!

Using the transformation

t
T = psinh <4(;]w> s
] (6.9)
X = h|——
peos <4GM> ’
the Rindler metric becomes
ds® = —dT? + dX?2. (6.10)

Note that the range of these variables is X € (0,00) and —X < T < X. We see that Rindler
space is just a patch of Minkowski space in disguise (see Fig. 25).

Observers at constant p (which, as we saw, are accelerated) have coordinates such that X2 —
T? = p? = const, which are hyperbolas in the (7, X) plane. Lines of constant ¢ are such that
T/X = tanh(t/4GM) = const, i.e. straight lines with slope tanh(¢/4GM). These lines are shown
in Fig. 25. For any finite ¢, the horizon at p = 0 is mapped to the origin T'= X = 0. For t = Fo0,
the horizon corresponds to the two lines X = +7. (To see this, we scale t — +oo and p — 0,
while keeping pett/4GM fixed.) We see that the event horizon of a black hole is not a timelike
surface, like for a star, but a null surface.

The original coordinates ¢t € (—00,00) and = € (0,00) only cover the region with X > 0 and
—X < T < X. The other regions are not covered by the original coordinates, however, they
are perfectly fine regions of flat spacetime and we can “extend” the range of the coordinates to
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Figure 25. Illustration of the coordinates on Rindler space, the near horizon geometry of a Schwarzschild
black hole.

T,X € R. We see that there is nothing special going on at the horizon X = £|T|. If we zoom
in on the horizon, we find it to be no different from any other point in the spacetime. Having
said that, we will see below that the horizon has rather special properties, but those only become
apparent from a more global perspective.

In the following, we will go through a very similar process to “extend” the region of spacetime
covered by the original coordinates. The apparent singularity at p — 0 is very similar to the
apparent singularity at r — 2GM, the Schwarzschild radius.

Eddington—Finkelstein coordinates

Our task is to find new coordinates that are better behaved at r = 2GM than our original
Schwarzschild coordinates. To motivate the choice of new coordinates, we first consider radial
null geodesics in the Schwarzschild spacetime.

Since df = d¢ = 0 for a radial trajectory, and ds®> = 0 for a null geodesic, we have

-1
- <1 - —2GM) dt* + (1 - —2GM> dr? =0, (6.11)
T r
and hence .
dt 2GM N\~
Z=4(1-= . 12
dr ( T > (6.12)
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Figure 26. In the Schwarzschild coordinates, the light cones “close up” as they approach r = 2GM. To
an outside observer nothing crosses the event horizon.

The + sign describes outgoing photons (dr > 0 for d¢ > 0), while the — sign is for incoming
photons. Equation (6.12) gives the slope of the photon trajectories in the t—r coordinates. For
large r, we get dt/dr = 41 which are the usual 45° light cones of Minkowski space. As we
approach the Schwarzschild radius, however, we see that dt/dr becomes larger and the light
cones “close up” (see Fig.26). In fact, for r — 2GM, we have dt/dr — oo and there is no radial
evolution for any finite d¢. A light ray that approaches the Schwarzschild radius never seems to
get there. As we will see, this is an illusion of the Schwarzschild coordinates.

The closing up of the light cones can be avoided by introducing a new radial coordinate r*
defined as

2GM\ 2
dr*? = (1— Ci ) dr?, (6.13)
r* =1 +2GMn (QGLM - 1) . (6.14)

In terms of the coordinate r*—called the tortoise coordinate (or Regge-Wheeler coordinate)—
the light cones would have a fixed slope:

dt 2GM\ dt
(1— ¢ ) = +1 = t==r"+const. (6.15)

_ = :I: =
dr T dr*

This suggests that it might be useful to write the Schwarzschild geometry in t—r* coordinates. In
these coordinates, the metric takes the following form:

(6.16)

2GM
ds? = <1 - G) (—dt? + dr*2) + r2dQ2
T

where r should be thought of as a function of r*. The light cones now don’t close up anymore
and none of the metric coefficients blow up at r = 2GM (although both g and g+« still vanish
there); see Fig.27. However, the coordinates are not perfect yet, since the surface of interest,
r = 2GM, has been pushed to r* = —o0.
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Figure 27. In the tortoise coordinates (6.14), the light cones remain “open”, but r = 2GM has been
pushed to infinity.

Our next step is to define coordinates that are naturally adapted to the null geodesics. These

null coordinates are
v=t+r",
(6.17)
u=t—r".
An attractive feature of these coordinate is that ingoing radial null geodesics correspond to
v = const, while the outgoing ones satisfy u = const. Another name for the coordinates in (6.17)

are the Eddington—Finkelstein coordinates.

We then replace t by t = v — r*. Since

2GM\ !
dt:dv—dr*:dv—<1— Gr > dr, (6.18)
the metric (6.16) becomes
2GM
ds* = — <1 — G) dv? 4 2dwvdr + r2d0? | . (6.19)
r

This is the Schwarzschild metric in ingoing Eddington—Finkelstein coordinates. Note that the dr?
term has disappeared and there is no real singularity at » = 2GM anymore. However, the metric
coefficient g, vanishes at r = 2GM and flips sign for r < 2GM. Is that healthy? One thing to
notice is that although g,, vanishes at » = 2GM, there is no real degeneracy. To see this, we

compute the determinant of the metric

—(1-2GM/r)1 0 0

1 00 0
0 02 0 = —rtsin?. (6.20)
”

0 0 0 r2sin?6

g =detg,, =

We see that the determinant is perfectly regular at »r = 2GM. The new cross term dvdr has
stopped the metric from becoming degenerate at the horizon. Hence, the metric is invertible and
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Figure 28. In the ingoing Eddington-Finkelstein coordinates, the light cones don’t close up at r = 2GM,
but they “tilt over”.

r = 2GM is simply a coordinate singularity of the original coordinates. Just like in the case of
Rindler space, we can therefore use the ingoing Eddington-Finkelstein coordinates to continue
the radial coordinate r inside the horizon, all the way to the singularity at r = 0.

In the Eddington-Finkelstein coordinates, the ingoing radial null geodesics satisfy
v=t+r"=const (ingoing), (6.21)

while the outgoing ones have u = t — r* = const, or v = 2r* 4+ const. For r > 2G M, the definition
(6.14) of the tortoise coordinate r* implies

v=2r+4GMIn <2GLM - 1) + const  (outgoing, r > 2GM). (6.22)
Clear, the log term becomes ill-defined for r < 2GM. An alternative definition of the tortoise
coordinate that obeys (6.13) on both sides of the horizon is
T

2GM

This tortoise coordinate is multi-valued, with 7* € (—o0, 00) outside the horizon and r* € (—o0, 0)

r* :r+2GMln’ —1(. (6.23)

inside the horizon. The black hole singularity » = 0 is at »* = 0. The outgoing geodesics then

obey
v=2r+4GMIn ‘ 2C§M - 1‘ + const  (outgoing) (6.24)
and the slope of the ingoing and outgoing null geodesics is
0 (ingoing)

dv 1 (6.25)

g 2GM\ ™ :

dr 2 <1 - > (outgoing)

r

Notice that the expression in (6.25) for dv/dr, without absolute values, applies both inside and
outside the horizon. This shows that the light cones now don’t close up at r = 2GM, but they
“tilt over” (see Fig.28): dv/dr changes sign at r = 2G M. Inside the horizon, even the “outgoing”
null geodesics are directed towards the singularity at » = 0. This is what makes the Schwarzschild
radius an event horizon. All future-directed timelike geodesics are trapped inside r = 2G M.
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< ingoing

< outgoing

Figure 29. Finkelstein diagram in ingoing coordinates. Ingoing null rays are shown in red, outgoing in
blue. Inside the horizon, outgoing geodesics do not go out!

Finkelstein diagram

We would like to draw a diagram-—called the Finkelstein diagram—where the ingoing null
rays are at 45 degrees. A simple way to do this would be to use the (¢,r*) coordinates. However,
as we have just seen, r* isn’t single-valued, so we prefer to use the original radial coordinate r.
We therefore define a new time coordinate t* such that

v=t+r*=t"+r. (6.26)

Ingoing null rays then travel at 45 degrees in the (t*,r) coordinates, where t* = v — r. Using
(6.24) for the outgoing null rays, we have

—r + const (ingoing)

£ = (6.27)

r+4GM In ‘1 — QGLM‘ + const  (outgoing)

These curves are shown as the red and blue lines in Fig.29. Crucially, the “outgoing” geodesics
inside the black hole do not go out! This is why the region r < 2GM is a black hole.
White hole

An alternative extension of the Schwarzschild geometry replaces the time coordinate ¢ with the

other null coordinate
u=t—r*. (6.28)
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Figure 30. Finkelstein diagram in outgoing coordinates. Ingoing null rays are shown in red, outgoing in
blue. Inside the horizon, ingoing geodesics do not go in! Note that this figure is the time reverse of Fig. 29.

Since

2GM\
dt:du+dr*:du+<1— ¢ ) dr, (6.29)
r

the metric (6.16) becomes

2GM
ds? = — (1 — G> du? — 2dudr + r2d0?| . (6.30)
T

This is the Schwarzschild metric in outgoing Eddington—Finkelstein coordinates. The only differ-
ence with the metric in the ingoing coordinates (6.19) is the sign of the cross term dudr. This
small difference has a big effect.

The Finkelstein diagram in the outgoing coordinates is shown in Fig. 30. This time the space-
time diagram is drawn for r and t* = u + r, so that the outgoing geodesics are at 45 degrees.
Now, the outgoing geodesics always go out, even when they start behind the horizon. Of course,
this is the opposite of a black hole; it is called a white hole and you should think of it as the time
reverse of a black hole. Since the Einstein equations are time reversal invariant it isn’t surprising
that we find the time reversal of a black hole. Having said that, white holes are not physically
relevant since, in contrast to black holes, they cannot be formed from collapsing matter.

Kruskal coordinates

We have just seen that we can extend the € (2GM, c0) coordinates of the Schwarzschild solution
in two different ways, leading to black holes and white holes. To understand this, we go back to
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Figure 31. Illustration of the parts of Rindler space covered by ingoing coordinate (left) and outgoing
coordinates (right).

the near horizon limit and the Rindler geometry. The region outside the black hole is the right-
hand quadrant of Rindler space; see Fig.25. The ingoing Eddington-Finkelstein coordinates
extend this to the upper quadrant, while the outgoing Eddington-Finkelstein coordinates extend
it to the lower quadrant; see Fig.31. To make this more explicit, we will introduce another set
of coordinate which cover the entire spacetime, including both black holes and while holes.

The idea is to write the Schwarzschild metric using both null coordinates v = t + r* and
u =t — r*. This gives

ds* = (1 — 2GM> (—dt? + dr*?) + r?dQ?

T

(6.31)

_<1_2GM

. ) dudv + 72d0?

where r? should be viewed as a function of u — v. In these coordinates, the metric is still
degenerate at r = 2G M, so this isn’t ideal yet. An improved set of coordinates are the Kruskal
coordinates (or Kruskal-Szekeres coordinates) defined by

—u/4GM
U=—e ¥ ,

U _ Gt (6.32)

The exterior of the black hole corresponds to U < 0 and V' > 0. Outside the horizon, we have

UV =~ /26M (2GLM _ 1) er/2GM (6.33)

% _ _t/20M (6.34)
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The metric (6.31) then becomes

2GM
ds2:—<1— G >dudv+r2dQ2

,
2GM )\ (4GM)? 9 19
< . ) —y UV +rd
_ 2GM 2 r 1 jeaMm 21092
_—(1— - >(4GM) (2GM—1) e dUAV + r2dQ)
32(GM)?

— | 28T o 2GM Qv 4 r2d02 .

r

The original Schwarzschild coordinate cover only the region of the spacetime with U < 0 and
V' > 0, but nothing stops us now from extending this to U,V &€ R. The metric is manifestly
smooth and non-degenerate at r = 2G M.

The coordinates U and V are both null coordinates, in the sense that their partial derivatives
Oy and Oy are both null vectors. There is nothing wrong with this, but it also easy to convert
this into a system when one coordinate is timelike and the rest are spacelike. To achieve this, we
simply define

1 r 1/2
T=_(V U:( —1> r/AGM gnp (1),
2V U= sanr © \iem (6.35)
1 r 1/2 t ’
X = (V — :( _1) r/AGM oo (1)
2V =U=3em R P Tel
in terms of which the metric becomes
32(GM)3
ds? = SACM) v pam (—dT? +dX?) +r2dQ?|, (6.36)
r
where r is defined implicitly through
T2—X2:<1— r ) r/2GM '
50 ) € (6.37)
Like in the (¢,7*) coordinates, the radial null geodesics look like in flat space:
T = +X + const. (6.38)

Unlike in the (t,7*) coordinates, however, the horizon » = 2G'M is not infinitely far away, but

maps to
T==xX. (6.39)

Note again that it is a null surface. Surfaces of constant r, satisfy 72 — X2 = const and are
therefore hyperbolae in the X—T planes. Surfaces of constant ¢ are given by

T t

i.e. straight lines with slope tanh(¢/4GM). Note that as ¢ — £oo the curves given by (6.40)
become the same as (6.39); therefore ¢ = +oo represents the same surface as r = 2GM. All of
this is very similar to what we found in Rindler space.
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Kruskal diagram

Figure 32 shows the Schwarzschild spacetime in Kruskal coordinates. Shown are both the X-T
coordinates and the rotated U-V coordinates. As we have seen in (6.39), the horizon r = 2GM
corresponds to the two null surfaces:

r=2GM = T=+X (UV=0). (6.41)

The null surface T'= X (or U = 0) is the horizon of the black hole (the future horizon), while
the null surface T'= —X (or V' = 0) is the horizon of the white hole (the past horizon). Region I
is the spacetime outside of the black hole (white hole). This is similar to the Rindler geometry
shown in Fig. 25, but now for r € (2GM, c0). Regions IT and III and the inside of the black hole
and the white hole, respectively.

The singularity is mapped to two spacelike surfaces:
r=0 = T=+VX2+1 UV =1). (6.42)

In Fig. 32, this is shown as two disconnected hyperbolae. The surface T = +v X2 +1 (or U,V >
0) is the singularity of the black hole, while T'= 4+ — vV X? 4+ 1 (or U,V < 0) is the singularity of
the white hole. You may have thought that the singularity of a black hole was a point that traces
out a timelike worldline (like a massive particle). The diagram shows that this is not the case.
David Tong describes this very clearly: “Once you pass through the horizon, the singularity isn’t
something that sits to your left or to your right: it is something that lies in your future. This
makes it clear why you cannot avoid the singularity when inside a black hole. It is your fate.
Similarly, the singularity of the white hole lies in the past. It is similar to the singularity of the
Big Bang.”

Outside of the horizon, we have a timelike Killing vector K = 0; that allows us to define the
conserved energy of particles along geodesics. It is interesting to see what happens to this Killing
vector inside the horizon. In the Kruskal coordinates, we have

g o9vV.o oU 0 1 0 0
TR T AR T A Tel <Vav U@U) (6.43)
Using the Kruskal metric (6.35), we find that the norm of K is
2GM
g K'KY = — (1 L ) . (6.44)
r

For r > 2G'M, we have K? < 0 and the Killing vector is timelike as expected. Inside the horizon,
however, the norm changes sign and the Killing vector becomes spacelike. When we say that a
spacetime is stationary, we mean that is has a timelike Killing vector. This is not the case for
the geometry inside the horizon. The full black hole geometry therefore is not time-independent.

What is region IV in the Kruskal diagram? It is another mirror copy of the black hole, now
covered by U > 0 and V' < 0. To see this, we can write the Kruskal coordinates as in (6.32), but

with different signs,
U= +e—u/4G’M

o (6.45)
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Figure 32. Kruskal diagram of the Schwarzschild solution. Region I corresponds to the outside of the
black hole. Region II is the inside of the black hole, while region III is the inside of the white hole. Region
IV is the mirror image of region I. Regions I and IV are connected by a wormhole (or Einstein-Rosen
bridge).

Doing all the coordinate transformations in reverse then shows that region IV is again described
by the Schwarzschild metric. Note that regions I and IV are spacelike separated, so that an
observer in I cannot send a signal to IV. The regions are causally disconnected. Nevertheless, it is
still rather freaky. The full spacetime has two copies of the black hole exterior. The two regions
are connected by a wormbhole (or FEinstein-Rosen bridge). Because the regions are spacelike
separated, however, it is not like the science fiction wormholes that you could travel through.

Penrose diagram*

A black hole is defined as the region of space from which light cannot escape to infinity. The
boundary of that region is the event horizon. In the Kruskal diagram, infinity is still a large
distance away. A more precise way to capture the black geometry maps the points at infinity
to a finite distance. This leads to the famous Penrose diagram which allows us to draw the
entire spacetime on a sheet of paper. For the Schwarzschild black hole, the Penrose diagram is
very similar to the Kruskal diagram; we just have to straighten out a few lines. Penrose diagram
play an important role in exhibiting the causal structure of the spacetime, so it is worth learning
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Figure 33. Penrose diagram of two-dimensional Minkowski space.

what they are all about.

Two-dimensional Minkowski—Let us start with a simple example: two-dimensional Minkowski
space, with metric
ds® = —dt? + da?. (6.46)

We first introduce light cone coordinates,

u=t—ux,
(6.47)
v=t+x,
so that the metric becomes
ds? = —dudv. (6.48)

The range of the coordinates is the entire real lines, u,v € (—o0,00). We would like to map this

to a finite range. One choice of such a mapping is

u = tanu,
N (6.49)
v =tanv,
so that @, v € (—7/2,+m/2). In the new coordinates, the metric becomes
1
ds* = dadd. (6.50)

 cos? G cos? b
The crucial point is that the overall factor does not change the causal structure since it doesn’t
affect null geodesics which obey ds? = 0. We therefore define a new metric

d5* = (cos® i cos® 0)ds?* = —dudd . (6.51)

The two line elements d3? and ds? are related by a conformal transformation and have the same
causal structure. The Penrose diagram is the graphical representation of the spacetime in the

compactified coordinates 4 and o.
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We draw the light cone coordinates 4 and v at 45 degrees, so that light rays travel at 45
degrees. Figure 33 show the resulting Penrose diagram. The boundaries of the diagram are
different types of infinity:

e i*: All timelike geodesics start at i~, with (@,9) = (—7/2, —7/2) and end at it, with
(t,0) = (+m/2,4m/2). These points are called past and future timelike infinity, re-
spectively.

e i%: All spacelike geodesics start and end at the two point labelled i°, either (,7) =

(—m/2,4m/2) or (4,v) = (+m/2,—7/2). These points are called spacelike infinity.

e #*: All null geodesics start on .~ (“scri-minus”), with & = —7/2 or o = —7/2, and end
on It (“scri-plus”), with @ = +7/2 or © = +m/2. These boundaries are called past and
future null infinity, respectively.

Four-dimensional Minkowski.—Let us repeat this exercise for four-dimensional Minkowski space:

ds* = —dt* + dr® + r?dQ?. (6.52)
Going to light cone coordinates,
u=t—r,
(6.53)
v=t+nr,
the metric becomes 1
ds®* = —dudv + Z(u —)2d0?, (6.54)

and, using the same mapping as in (6.49), we get

1

d82 = 5 <~ o5 =~
4 cos? i cos? ¥

(—4dadd + sin® (@ — 9)dQ?) . (6.55)

Figure 34. Penrose diagram of four-dimensional Minkowski space. Shows is also a null geodesics (in blue)
starting at .#~ and ending at .# .
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To study the causal structure of the spacetime, it again suffices to use the new metric
d&* = —4dadv + sin® (@ — 9)dQ? . (6.56)

One difference compare to the 2D case is that v > u because r > 0. This means that the
compactified coordinates obey

_l<a<i< -, (6.57)

oS

T
2
To draw a two-dimensional diagram, we suppressed the angular coordinates. The Penrose diagram
of four-dimensional Minkowski space is shown in Fig.34. The vertical line corresponds to the
point 7 = 0 and is not a boundary of the spacetime. A null geodesic that starts on &~ will
simply be reflected at the vertical line and end up at #+.

Back to Schwarzschild—After this digression, we are ready to return to the Schwarzschild geom-
etry. The metric in the light cone Kruskal coordinates is

2(GM)?
ds? = —&e—r/ 2EMATAV 4 r2d02. (6.58)
T
As in (6.49), we define )
U=tanU,
N (6.59)
V =tanV,
so that U,V € (—1/2,+7/2). The metric then becomes
1 32(GM)? - . -
ds* = = — [— (GM) e 2EMATAV + 12 cos? U cos? V d0?| . (6.60)
cos? U cos? V r

Figure 35. Penrose diagram for the Schwarzschild black hole. (Figure by Robert McNees.)
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Dropping the conformal factor, we define

32(GM)3
T

ds® = — e TPEMATAV + 12 cos® U cos® V dO2. (6.61)
The singularity at r = 0 (or UV = 1) now is at

tanUtanV =1 = sinUsinV —cosUcosV =0

L —— (6.62)
cos(U+V)=0 = |U+V==%r/2]|.

The singularities are therefore straight, horizontal lines in the Penrose diagram. In the absence of
the singularities, the Penrose diagram would be diamond-shaped, like that of 2D Minkowski. The
singularities cut off the top and bottom and the Penrose diagram of the Schwarzschild geometry
is that shown in Fig. 35.

Real black holes
We don’t think that the regions III and IV of the Kruskal diagram can arise in a physical

situation such as a black hole forming from a collapsing star. Figure 36 shows the alternative
Penrose diagram for matter collapsing into black hole. We see that the diagram is a hybrid of
the Penrose diagram for the Schwarzschild geometry (see Fig.36) and that of four-dimensional
Minkowski space (see Fig.34). We see that the spacetime of a realistic black hole shares the
singularity and the future event horizon with the maximally extended Schwarzschild solution,
without any white hole, past horizon, or separate asymptotic region.

7’:0 .
it

f+

Figure 36. Penrose diagram for a real black hole formed from a collapsing star. In interior of the star
(gray region) is nonvacuum and therefore is not described by the Schwarzschild metric.
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6.2 Charged Black Holes

The next simplest black hole solutions are those with electric or magnetic charge. We don’t think
that such charged black holes exist in nature, but they are nevertheless interesting for theoretical
reasons.

Charged black holes are solutions of the Maxwell-Einstein theory, with action

1 1
S=[d'sy/—g|-—5R--F2|. 6.63
[atev=s |- 172 (6.63)
Varying this action with respect to the vector potential A gives the Maxwell equation, V*F),, =

0, while variation with respect to the metric leads to the Einstein equation:
1 0 1 .
R, — §Rguv =8rG | F,'F,, — ZgWF Fy ). (6.64)

We will not derive the black hole solution to these equations, but only present it and discuss
some of its main properties. Maxwell equation admits a spherically symmetric solution for the

gauge field:

Qe Qm
T dt 1 €0 0de, (6.65)

A=—

where (). and @), are the electric and magnetic charges, respectively. The spacetime is described
by the Reissner-Nordstrom solution

ds® = —A(r)dt* + A7 (r) dr? + r2dQ? |, (6.66)
where oM 0 G
_q 2 A 2 U 2 2
Ar)y=1 . + 2 with Q* = 271_(Qe +Qz) - (6.67)

This solution is not too dissimilar from the Schwarzschild solution. The function in the metric
can be written as

A(r) = i(7" —ry)(r—r-), (6.68)

r2

re =GM +/GZM? — Q2. (6.69)

There are qualitatively different solutions depending on the size of @ (relative to GM):

where

e For ) — 0, we get r— — 0 and 74 — 2G M. The inner horizon therefore coincides with the
physical singularity at the origin and the outer horizon becomes the standard Schwarzschild
event horizon.

e For |Q| > GM, the function A(r) has no zeros and the corresponding black hole has no
horizon; like the Schwarzschild solution for negative mass. The singularity at » = 0 is
then called a naked singularities. We believe that such a naked singularity is unphysical;
roughly because it would require the total energy of the hole to be less than the contribution
from the energy of the electromagnetic fields alone, which would require the mass of the
matter to be negative. The absence of naked singularities in nature is called “cosmic
censorship”.
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e For |Q| < GM, the function A(r) has two zeros and the black hole has two horizons:
an outer horizon at ry and an inner horizon at r_. We will not analyze this situation
in detail, but just state some of the facts, highlighting especially the differences with the
Schwarzschild case: The singularity at » = 0 is now a timelike line, not spacelike surface
like for Schwarzschild. The outer horizon is like the event horizon of the Schwarzschild
black hole. In particular, the coordinate r switches from being at spacelike coordinate for
r > r4, to being a timelike coordinate for r— < r < r4, and you necessarily have to move in
the direction of decreasing r. However, at » = r_, the coordinate r switches back to being
spacelike and you do not have to hit the singularity at » = 0. You can chose to continue to
r = 0 or move back in the direction of increasing r back through » = r_. Then r becomes a
timelike coordinate again and you are forced to move in the direction of increasing r. You
will eventually be spit out of hole at r = r,, like emerging from a white hole.

e Finally, for |Q| = GM, we get an extremal black hole. The inner and outer horizons
merge into one and the metric takes the form

GM\? GM\?
ds® = — (1 — ) dt* + <1 — > dr? +r2d02. (6.70)
r r
It is interesting to take the near horizon limit of this geometry by defining

r=GM+n, (6.71)

with n < GM. Expanding for small 7, the metric takes the form

2 GM)2
g5t — — g2 4 dn? M)2A02 2
s Gt T (G )2 (6.72)
AdS, S

This metric is sometimes called the Robinson-Bertotti metric and denoted by AdSs x S2.
The fact that an anti-de Sitter geometry is found in the near horizon geometry of extremal
black holes was the origin of the AdS/CFT correspondence.

6.3 Rotating Black Holes

Real black holes are often rotating. This breaks the spherical symmetry of the Schwarzschild
solution, so the metric becomes a bit more complicated. In Boyer-Lindquist coordinates, the
so-called Kerr solution is

A : 29 2
ds® = ——(dt — asin?0dg)? + % [(r* + a®)d¢ — adt]2 + %drz + p2d6? |, (6.73)

p

where a = J/M is the angular momentum per unit mass and

A=r?—2GMr+a®,

6.74
p? =r?+a*cos? 0. ( )
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ergoregion

outer horizon

Figure 37. A rotating black hole has an ergoregion, where the Killing vector 0; becomes spacelike. Mass
and angular momentum of the black hole can be extracted through the Penrose process, the classical
analog of Hawking radiation.

Event horizons of the black hole correspond to ¢"" = A/p? = 0, or
A(r) =7? —2GMr +a®> =0. (6.75)

As for the Reissner-Nordstrom solution, there are three different cases. For a > GM, we have a
naked singularity. The extremal case is a = GM. The case of most interest is a < GM which
corresponds to the black holes observed in the real world. There are then two horizons at

re=GM +/G2M2 — a2 (6.76)

The causal structure of the Kerr black hole is very similar to that of the Reissner-Nordstrom
black hole.

Something interesting happens in the region just outside the horizon of the Kerr black hole.
Consider the Killing vector

0
K=—. 6.77
oy (6.77)
Its norm is 1
9K K" = gy = ——2(7"2 + 2G M7 + a® cos? 6) . (6.78)
P

For large r, this is negative and K is timelike. However, K becomes null on the surfaces defined
by

1?4 2GMr +a?cos?0 =0 = r=GM+\/G2M?— a?cos0. (6.79)

The smaller root is inside the horizon, but the larger is outside, except at § = 0,7 where it
touches. There is therefore a region outside the horizon—called the ergoregion—where K
becomes spacelike (see Fig. 37):

GM +VG2M? — a2 <7 < GM + /G2M? — a2 cos? 6. (6.80)

Interesting things can therefore happen even before you cross the horizon.

In Section 4.3, you learned that the conserved energy of a test particle is £ = — K, P*. When
K is timelike then £ > 0, since both K and P are then timelike and their inner product is
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negative. However, inside the ergoregion, K becomes spacelike and we can have particles with
E=-K,P"<0. (6.81)

This leads to a way to extract energy from a rotating black hole called the Penrose process.
It allows you to enter the ergoregion, throw an object into the black hole and emerge with more
energy than you entered with. In the process, the black hole loses a bit of its mass and angular
momentum. The Penrose process is the classical analog of Hawking radiation. In fact, Hawking
was inspired by the Penrose process to come up with the concept of Hawking radiation.
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7 Cosmology

One of the most important applications of general relativity is to cosmology. Our goal in this
chapter is to derive, and then solve, the equations governing the evolution of the entire universe.
This may seem like a daunting task. Fortunately, the coarse-grained properties of the universe
are remarkably simple. While the distribution of galaxies is clumpy on small scales, it becomes
more and more uniform on large scales. In particular, when averaged over sufficiently large
distances, the universe looks homogeneous (the same at every point in space) and isotropic (the
same in all directions). This leads to a simple mathematical description of the universe because
the spacetime geometry takes a very simple form.

7.1 Robertson-Walker Metric

The spatial homogeneity and isotropy of the universe mean that it can be represented by a
time-ordered sequence of three-dimensional spatial slices, ¢, each of which is homogeneous and

isotropic (see Fig. 38). The four-dimensional line element can then be written as'’

ds® = —dt? + a®(t)d¢?, (7.1)

where df? = v;;(2%) dz’da? is the line element on ; and a(t) is the scale factor, which describes
the expansion of the universe. We will first determine the allowed forms of the spatial metric
7i; and then discuss how the evolution of the scale factor is related to the matter content of the

universe.

flat spherical hyperbolic

Figure 38. The spacetime of the universe can be foliated into flat, spherical (positively-curved) or
hyperbolic (negatively-curved) spatial hypersurfaces.

Homogeneous and isotropic three-spaces must have constant intrinsic curvature R(g) [vi5]-
There are then only three options: the curvature of the spatial slices can be zero (flat), posi-
tive (spherical) or negative (hyperbolic). Let us determine the metric for each case.

Assuming isotropy about a fized point r = 0, the spatial metric can be written as

A% = ydatda? = 22 dr? 4 r2d02.

108keptics might worry about uniqueness. Why didn’t we include a go; component? Because it would introduce
a preferred direction and therefore break isotropy. Why didn’t we allow for a nontrivial goo component? Because
it can be absorbed into a redefinition of the time coordinate, dt’ = /goo dt.
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It is a straightforward, but tedious, calculation to derive the Ricci scalar for the metric 7;;. The
nonvanishing Christoffel symbols are

7, =0, Thy=—re 20), bp = —re 2*sin? 4,
Ffe =r L, ngqb = —sinfcosf, (7.2)
Ff¢ =r L, ng) = cot 6.
The components of the Ricci tensor are
2
Rrr = *arOé,
T
Rggp = e 20 (19,00 — 1) + 1, (7.3)

Ryy = [eih(ﬂ (rora—1)+ 1} sin?4,
so that the three-dimensional scalar curvature becomes

ij 2 d —2a(r

Setting (7.4) equal to 6K, with K a constant, and integrating, we get

e204(7") _ 1

1 Kr2 bl (7.5)

where the parameter b arises as a constant of integration. For the geometry to be locally flat
near the origin, we need e2® — 1 (or at least a finite constant) as r — 0. If b # 0 then we would

2«

have e*® — 0, so we must set b = 0. The spatial metric then is

dr?

2 _
de 11— Kr2

202 (7.6)

It is also convenient to define K = k/ R%, where kK = 0,41, —1. The three different values of k
correspond to the sign of the scalar curvature and hence parameterize whether the spatial slices
are flat, spherical or hyperbolic. The scale Ry is the curvature radius.

The spacetime metric (7.1) then is

dr?

ds? = —df? + a*(t) | ——
i LA ey

+r2dQ?| |. (7.7)

This is called the Robertson-Walker metric, or sometimes the Friedmann-Robertson-Walker
(FRW) metric. Notice that the symmetries of the universe have reduced the ten independent
components of the spacetime metric g, to a single function of time, the scale factor a(t), and a
constant, the curvature scale Ry. We will use the convention that the scale factor today, at time
t = to, is normalized as a(ty) = 1.
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7.2 Friedmann Equation

We would like to determine how the scale factor evolves. This is determined by the Einstein
equation. Let’s see how to apply it to the FRW geometry (7.7).

Substituting g, = diag(—1,a?v;;) into the definition

1
FZB - §9M(‘9a9m + 089ar — OrGas) (7.8)

it is straightforward to compute the components of the Christoffel symbol. I will derive I‘% as an
example and leave the rest as an exercise. All Christoffel symbols with two time indices vanish,
iLe. I'f, = Fgﬁ = 0. The only nonzero components are

Iy = aanij ,
G
0j = 05 (7.9)

1
k= §7d(3j’ykl + it — Avik) 5

or are related to these by symmetry (note that ' 5= Iz.)-

Example Let us derive 'Y, 5 for the metric (7.7). The Christoffel symbol with upper index equal to
Zero is

1
FgB = 59[))‘(&19& + 98gar — Orgap) - (7.9)
The factor g% vanishes unless A = 0, in which case it is equal to —1. Hence, we have
1
Tas = =5(9agp0 + Jsga0 — Dogas) - (7.9)

The first two terms reduce to derivatives of goo (since g;o = 0). The FRW metric has constant ggg, so
these terms vanish and we are left with

1
I = 590905 (7.9)
The derivative is only nonzero if o and 3 are spatial indices, g;; = a2'yij. In that case, we find
F?j = ad'yij 5 (79)

which confirms the result in (7.9).

Given the Christoffel symbols, nothing stops us from computing the Ricci tensor
— A A A A
Ry = O\, — O\ + 13,10, — I‘Z/\pr. (7.10)

We don’t need to calculate R;y = Ry;, because it is a three-vector and therefore must vanish
due to the isotropy of the Robertson-Walker metric. (Try it if you don’t believe me!) The
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non-vanishing components of the Ricci tensor are

Roo = —3% : (7.11)

K
“+2(“) +25
a a a

I will derive Rgp as an example and leave R;; as a (tedious) exercise. Notice that we had to find

Rij = Gij - (7.12)

that R;; o< g;j to be consistent with homogeneity and isotropy.

Example Setting p = v = 0 in (7.10), we have
Roo = 0xI'0y — 0oT'gy + T3, T8 — To\I7, - (7.13)
Since Christoffel symbols with two time indices vanish, this reduces to

Roo = =8, — Féjréi . (7.14)

d [ a a\? i
-2 (3%)_3(2) = 3% 1
ro— 2 (52) -5 ()’ = o, 19

which is the result cited in (7.11).

Using Tf; = (a/a)d}, we find

Given the components of the Ricci tensors, it is now straightforward to complete the calcula-
tion. The Ricci scalar is

R = ¢" R,

. . 2

a a K
-—+2 () + 2—2
a a a

: (7.16)

1 .. a )
= *Roo + *2’7”Rij = 33— + (5;
a a

i a\? K
-+(=) +5
a a a

and the nonzero components of the Einstein tensor are

Ny
a K
Goo = 3 [(a) + a2] ) (7.17)
. . 2
K
Gij = — [2a+ <a) + =
a a a

I leave it to you to verify that these components of the Einstein tensor follow from our results

9ij - (7.18)

for the Ricci tensor.

On large scales, the expansion of the universe is sourced by matter whose energy-momentum
tensor is that of a perfect fluid

T, = (p+ P)ULU, + Py, . (7.19)
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We take the fluid to be at rest in the preferred frame of the universe, so that U# = (1,0,0,0) in
the FRW coordinates. We then have

Too = p, (7.20)

We can now assemble all the pieces and look at the Einstein equation:
Guv +Agu = 87G T, . (7.22)

It is conventional to move the cosmological constant term to the right-hand side and interpret it
as part of the energy-momentum tensor, T,Sf,\) = —(A/87G) g, with pp = A/87G and Py = —pa.

The cosmological constant is then also referred to as a form of dark energy.

The temporal component of the Einstein equation is

-\ 2

8rG K

GOU =81 To() = g = Lp - 5 |- (7.23)
a 3 a?

This is the Friedmann equation, one of the most important equations in cosmology. The
left-hand side describes the expansion rate of the universe as characterized by the Hubble pa-
rameter

a
H=-. 7.24
. (7.2

Today’s value of the Hubble parameter is the Hubble constant, Hy ~ 70 km/sec/Mpc, where
Mpc stands for megaparsec, which is 3 x 10*2m. Typical cosmological scales are set by the
“Hubble length” and the “Hubble time”:

dy = cHy' ~ 4300 Mpc, (7.25)
tg = Hy' = 14billion years . (7.26)

These a rough estimates for the size of the observable universe and its age.

The spatial components of the Einstein equation imply

. . 2
K
Gy =SrGTy; = 2Z+<Z) +— = —87GP
i 4nG
= %Z-%(p—l—iﬂp) . (7.27)

This equation goes by several names: it is called the “second Friedmann equation”, the “Ray-
chaudhuri equation” or the ”acceleration equation”.

To complete the system of equations, we need to know how the density and pressure of
the fluid evolve. This follows from V,T*" = 0. Using that Vo9, = 0, U,U” = —1 and
UV, U" =iV, (U,U") =0, we have

0=—U,V, T = U'V,p+ (p+ P)V,U". (7.28)
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In the rest frame, with U* = (1,0, 0,0), this becomes

p+3g(p+P) =0/, (7.29)

where we used that V,U* = 0,U" + FZ/\U’\ =T U° = 3a/a. Equation (7.29) is the continuity
equation.

Finally, we must specify a relation between the density p and the pressure P. The fluids of
interest in cosmology can be described by a constant equation of state:

P
w="|. (7.30)
p
Important special cases are w = 0 (for pressureless matter), w = 1/3 (for radiation) and w = —1

(for dark energy). For a constant equation of state, the continuity equation (7.29) implies

a~3 matter

P £0 _ .
p =-314w) = p= e <) @ 4 radiation (7.31)
0

a’ dark energy

where pg is an integration constant. Recall that we typically use the convention that the scale
factor today is a(tp) = 1, in which case pg is the density today. Note that a=3 for pressureless
matter is the expected scaling of energy density with volume, V o a. The energy of radiation

1 so that the density scales as a™%.

decreases as E «x a~ Dark energy is a strange case where
the energy density stays constant as the volume increases, which means that energy must be
produced. This suggests that dark energy is somehow a property of empty space itself: As
the universe expands, more space is being created and the dark energy increases in the same

proportion.

Figure 39 shows the evolution of the energy densities of the three main components in our
universe. We see that the universe is often dominated by a single component: first radiation, then
matter and finally dark energy. In that case, we can easily solve the Friedmann equation (7.23):

2/3 matter

a 2 1 + 2/3(14w) 1/2 o
(a) * i) = a(t):(to) x 4 t*/< radiation (7.32)

eflot dark energy

This shows how the universe expands in the three different stages of its evolution.

7.3 Ouwur Universe

A central task in cosmology is to measure the parameters occurring in the Friedmann equation
(7.23) and hence determine the composition of the universe. The density p is the sum of multiple
components:

baryons (b)

photons () neutrinos ()  electrons (e) protons (p)  cold dark matter (c)

radiation (r) matter (m)
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Figure 39. Evolution of the energy densities in the universe. We see that there is often one dominant
component: first radiation, then matter and finally dark energy. Sometimes two components are relevant
during the transitions between the different eras.

A flat universe (k = 0) corresponds to the following critical density today:

3 2
Perit,0 = ﬁ = 8.9 x 1073 gramsem ™3
T

=1.3 x 10! My Mpc3
= 5.1 x 107® protonsecm 2. (7.33)

It is convenient to measure all densities relative to the critical density and work with the following
dimensionless density parameters

Qip = pi,0 , i=r,m,A, ... (7.34)
Perit,0
In the literature, the subscript ‘0’ on the density parameters 2; g is often dropped, so that €2;
denotes the density today in terms of the critical density today. From now on, I will follow this
convention. The Friedmann equation (7.23) can then be written as

H? _ _ -
i Qa ™t + Qa2 4+ Qa2+ Qp |, (7.35)
where we have introduced the curvature “density” parameter, Q; = —k/(RoHp)?. Note that

Qr < 0 for k£ > 0. Evaluating both sides of the Friedmann equation at the present time, with
a(to) = 1, leads to the constraint

1 = Q +Q,+Qr+ Q. (7.36)
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The measured values of these parameters are
Q,=899x107°, Q, =032, Qy=068, [ <0.005, (7.37)

with €, = 0.05 and Q. = 0.27. We see that most of the stuff in the universe is invisible—dark
matter and dark energy—only 5% is ordinary matter (stars, planets, you and me). Explaining
what exactly dark matter and dark energy are remains one of the great open challenges of modern
physics.
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8 Gravitational Waves

Just like the Maxwell equations allow for electromagnetic wave solutions, the Einstein equations
admit propagating waves—called gravitational waves—as solutions. Although these gravita-
tional waves were predicted over a century ago, they we detected only very recently. In this
chapter, I will give a brief sketch of the physics of gravitational waves. More can be found in
David Tong’s lecture notes.

8.1 Linearized Gravity

Gravitational waves are small ripples in the spacetime and can therefore be described by a small

perturbation around Minkowski space:

Guv = Nuv + h,uzx , (8.1)

with |h,,| < 1. We will work at leading order in the fluctuations hy,. At this order, the indices
on hy,, can be raised with 7, rather than g,,. For example, we have h*" = n##n"?h,,. Moreover,

the inverse metric is
g/“’ — 771“/ _ h.u"/7 (82)

and the Christoffel symbols are

1
7770)\(8uhu)\ + 6l/hu/\ - a)\h,uz/) . (8.3)

I 5

The Riemann tensor is
R? v = 8PFZV - 8”FZP + Fﬁv Z/\ o F;J\u oA
= OI)FZ,, - OVFZ/) (8.4)
= %nﬂ(aﬁaﬂ hux — 0pOzhyw — OuOuhpn + 0yOrhyp) -
where we have dropped the I'T' terms because they are second order in h. The Ricci tensor then
is . 7
Ry, = 5(W),JL,,A — Ohyy + 020y h 5 — 8,0,h), (8.5)
with h = A, and O = 0"0,,. Finally, the Ricci scalar is
R =0"0"h,, —Oh. (8.6)

Assembling all the pieces, we find that the linearized Einstein tensor is

1
G = 5[0 0ubir + 0Oy = Oy = D — (00 ey — OR) ] | (8.7)

The Bianchi identity V#G),,, = 0 becomes 0*G,,, = 0 for the linearized Einstein tensor. It is easy
to check that this is indeed satisfied for the tensor in (8.7). The Einstein equation is

POuhuy + 0, hux — Ohyy — 0,00 — (0797 hpy — D)1 = 167G Ty (8.8)

Gravitational waves are solutions to the vacuum equation, but are sourced by a time varying 7}, .
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Gauge symmetry

Recall that under an infinitesimal change of coordinates, z# — x# — &H(x), the metric changes by

O0Guw = V& + Vi€, . (8.9)

For the perturbed metric (8.1), this can be viewed as a transformation of the linearized field A, .
At leading order (in both h,, and &,), we can replace the covariant derivatives by partial deriva-
tives and get

Py = hyw + 0,80 + 0., - (8.10)

This is very similar to the gauge transformation of the vector potential, A, — A, + 0,¢, in
Maxwell’s theory. Just as the electromagnetic field strength F),, = 0,4, -0, A, is gauge invariant,
so is the linearized Riemann tensor R?,,,.

Gauge fixing

In electromagnetism, it is often useful to pick a gauge. For example, imposing the Lorenz gauge,
0" A, = 0, the Maxwell equations, 9,F"” = J¥, reduce to the wave equations

OA, =J,. (8.11)
The analog of the Lorenz gauge in linearized gravity is the de Donder gauge
1
0" hy — ial,h =0. (8.12)

In the full nonlinear theory, the de Donder gauge corresponds to the condition g"*T, = 0. In
this gauge, the Einstein equation (8.8) greatly simplifies to

1
Oy — 50 1y = ~167G Ty, (8.13)

This can be further cleaned up by defining the trace-reversed perturbation

1
h,uu = huu - §hnuu ; (814)

so that

Ohyw = —161G Ty, | . (8.15)

We see that the linearized Einstein equation has just become a set of wave equations, which are
very similar to (8.11) in electrodynamics.

Newtonian limit

It is useful to check that this reproduces our earlier results in the Newtonian limit. In this
limit, the metric is nearly static, so we can replace [J = —9? + V2 by the Laplacian V2. Using
Too = p(x) and Ty; = Tj; = 0, the Einstein equations (8.15) become

V2hoo = —167G p(x),

- - 8.16
V2hoi = V?hij = 0. (8.16)
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This reproduces the Poisson equation, V2® = 47G p if hgg = —4®(x) and hg; = hi; = 0. Using
h = +4®(x), we get

hoo = —29,
ho; =0, (8.17)
hij = —284;; ,
and the full metric is
ds® = —(1+2®)dt* + (1 — 20)dx?, (8.18)

which is indeed the expected line element corresponding to Newtonian gravity.

8.2 Wave Solutions

Gravitational waves are solutions of the vacuum equation
O~y = 0. (8.19)

The solutions can be written as

Ry = Re(H e (8.20)
where H,,, is a complex polarization matrix and k* is the wavevector. The real part on the
right-hand side is often dropped, but it should be kept in mind that it is secretly there, so that
the final solution is real. Acting with 9, on (8.20) pulls down a factor of ik, from the exponential.
This implies that Ohy, = —(k,k*)h,, so that (8.20) solves (8.19) if k* is a null vector

ku k' =0. (8.21)

Writing k* = (w, k), with w the frequency, this is equivalent to w = +|k|, showing that the
gravitational wave travels at the speed of light.

Polarizations

Naively, the polarization matrix H,,, has 10 components. However, not all of these are indepen-
dent because of the gauge symmetry of the theory. Let’s see how many independent polarizations

survive.

It is useful to first remind ourselves how this works for electromagnetic waves. The four-
vector potential A* has 4 components, but some are related by gauge transformations. The
Lorenz gauge, 0" A, = 0, implies one scalar constraint, so it reduces the number of independent
components from 4 to 3. However, the Lorenz condition doesn’t fix the gauge completely. Con-
sider the gauge transformation A, — A, + 0, so that 0" A, — 0" A, + Oa. This keeps A* in
Lorenz gauge if Oa = 0. The freedom to perform these residual gauge transformations reduces
the number of independent components to 2. These are the familiar two transverse polarizations
of an electromagnetic wave.

We can now repeat the argument for gravitational waves. First of all, the de Donder gauge
condition, O“BW = 0, implies
K'H,, =0, (8.22)
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so that the polarization has to be transverse to the direction of propagation. This reduces the
number of independent polarizations from 10 to 6. However, the de Donder condition doesn’t fix
the gauge completely. Consider the gauge transformation h,, — hy, + 9,& + 0,€,, so that

Py = Py + 0u&y + 0u€u — 07 Eoy - (8.23)

This leaves the solution in the de Donder gauge, 8“BW =0, as long as
06, =0 = £ =\ (8.24)

Under such a gauge transformation, the polarization matrix changes as
Hy,, — Hyy + (kA + ko — E7 XN - (8.25)

Polarization matrices that differ by these residual gauge transformations describe the same grav-
itational wave. We can use this to our advantage. For example, we can use the transformation
(8.25) to set

Hoy,=0 and H",=0. (8.26)

This is called the transverse traceless gauge, which we will assume from now on. In this
gauge, B;w = hy,. In the end, we have 10 — 4 — 4 = 2 independent polarizations.

Consider a wave propagating in the z-direction. Its wavevector is k* = (w,0,0,w). The gauge
condition (8.22) then implies Hy, + Hs, = 0. Imposing (8.26), the polarization matrix takes the
following form

00 0 0
0H, Hy O

H, A = 8.27

“” 0Hy —H, 0|’ (8:27)
00 0 0

where the two functions H, and Hyx describe the two polarizations of the gravitational wave.

Stretching space

To visualize the polarizations of the gravitational wave described by (8.27) consider a ring of
particles in the x-y plane:

We would like to know what happens to this ring of particles when a gravitational wave passes by.
In Section 4.5, we derived an equation describing the relative acceleration between neighbouring
geodesics:

D?BH

o = Rl UMUT B, (8.28)

93



where B* is an infinitesimal separation vector and U* is the four-velocity (tangent vector) of one
of the geodesics. Let us assume that in the absence of the gravitational wave, the particles are
in the rest frame, with U# = (1,0,0,0). The gravitational wave will perturb this at O(h), but
since the Riemann tensor is already O(h), we do not have to include this perturbation in U*.
Similarly, we can replace the proper time 7 by the coordinate time ¢ and write (8.28) as

d?BH

= ~RloB (8.29)

Using hy,o = 0, the linearized Riemann tensor (8.4) implies
H 1o H
Rfop0 = —§8oh P (8.30)

so that the geodesic deviation equation becomes

2 2
B 1P, b,
dt? "~ 2 df?

(8.31)

We now take B* to be the vector from the center to any particle on the ring. By studying how
B* evolves, we determine how the ring of particles (and hence the space in between them) is
deformed by the gravitational wave. For simplicity, we will solve the geodesic deviation equation
in the z = 0 plane.

We first consider the + polarization (i.e. we set Hx = 0). Equation (8.31) then gives

@ - _£H+eithl ’

dt? 2

2 9 5 (8.32)
d*B w -
— =ty B,

These equations can be solved perturbatively in small H. Keeping terms of order O(h) only, we
get
1 .
BY(t) = B}(0) <1 + §H+ew + - > ,
(8.33)

B2(t) = B2(0) (1 - %meiwt b ) .

Remember that we should take a real part on the right-hand side. Since the particles are initially
arranged in a circle, we have B1(0)? + B?(0)? = R%. Equation (8.33) then describes how the
circle of test particles gets distorted into an ellipse oscillating in a + pattern:

OOO00O0
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We then consider the x polarization (i.e. we set Hy = 0). In this case, the geodesic deviation
equation (8.31) gives

EB W e
de? 2 ’ (8.34)
d’>B? w? , '
— —7H>< elthl
dt? 2 ’
The perturbative solution to these equations now is
1 .
B'(t) = B*(0) + §BQ(O)HX6M e
(8.35)

1 .
B%(t) = B*(0) + 531(0)erwt 4o

We see that the solutions now mix the two directions B! and B2. To understand what is going
on, it is useful to write the equations in terms of B! + B2. Equation (8.35) then implies

B'(t) £ B*(t) = [B'(0) £ B*(0)] <1 + %er"wt + - > : (8.36)

which is exactly the same as the equations in (8.33). The distortion induces by the x polarization
is therefore the same as that of the + polarization rotated by 45°, i.e. the circle of test particles
gets distorted into an ellipse oscillating in a x pattern:

00000

The stretching and squeezing of space is used in the detection of gravitational waves by laser

interferometers like LIGO. Figure 40 shows an areal view of one of the LIGO detectors in Hanford,
Washington. As a gravitational wave passes, the lengths of the two arms change by

6£NH+’X
L~ 27

where L ~ 3km is the length of each arm. Since typical sources have H » ~ 1072, this means

(8.37)

that LIGO has to measure a change in the arm lengths of about 6L ~ 10~ m. This is a really
small number. To give you some sense of the experimental challenge, note that J L is smaller than
the radius of a proton and around 10'? times smaller than the wavelength of the light used in
the interferometer. It is equivalent to measuring the distance to the nearest star Alpha Centauri
(which is 4.2light yrs ~ 4 x 10'® m away) to the width of a human hair. It is incredible that this
can be done!

8.3 Creating Waves

To understand the production of gravitational waves, we have to consider the inhomogeneous
wave equation

Ohyw = —167G T, . (8.38)
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Figure 40. Areal view of the Laser Interferometer Gravitational-Wave Observatory (LIGO) at Hanford,
Washington.

We assume that the matter is moving around at non-relativistic speeds in some localized region
(see Fig.41). The solution of (8.38) outside of 3 can be written in terms of the “retarded Green’s
function”:

. Ty (tr,
o (£, %) = 4G / a3y TurtrY) (8.39)
by x -yl

where t, = t—|x—y| is the “retarded time”. The appearance of the retarded time is a consequence
of causality: the gravitational field FLW(t, x) is influenced by the matter at position y at the earlier
time t¢,, so that there is time for this influence to propagate from y to x.

We are interested in the gravitational field at a large distance from the source. Concretely,
we assume that the size of the source is d and we probe the field at a distance r = |x| > d. We
then have

x—yl=[(x—y) (x—y)]"

_ [a:2—2x-y+y2}1/2
=r [1 —2x-y/7“2—i—O(yQ/rz)}l/2
Xy 1 1 x-y

S AT = - =z 8.40
" s |x —y] P (8.40)
In addition, |x — y| sits inside ¢, =t — |x — y|, so that
T;w(tMY):Tuu(t_r+x'3’/r+"'7Y)
. X-
= Tt —ry) + Tt —ry) =L+ (8.41)

We assume that the motion of matter is non-relativistic, so that T, doesn’t change very much
over the time 7 ~ d that it takes light to cross the region X. If that is the case then the Taylor
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Figure 41. The field B;w (t,x) far from a localized source depends on the energy-momentum tensor T,
evaluated at the retarded time ¢, =t — |x —y]|.

expansion in (8.41) is a well-defined expansion with each term in the expansion becoming smaller
than the previous one.

At leading order in d/r, we then have

. 4G
hy(t,x) = 7“/ d3y Tuw(t—ry), (8.42)
Y
which for hgg and hg; reads
- 4G 3
hog(t, X) ~ TE, E = d yTog(t -, y) 5 (843)
Y
- 4G 3
hoi(t,x) ~ ——P;, P,= [ dyToi(t—r,y). (8.44)
r s

This just recovers the Newtonian limit we discussed in Section 8.1, with hoy = —4® = 4GM /T
and hg; = 0. More interestingly, the solution for the spatial components of the metric,

- 4
hij(t, x) ~ f/ Py Tyt —r,y), (8.45)
)
can be written as
- 2G d*I;;

where [;; is the quadrupole moment of the energy

Lij(t) = /E Py TO(tr,y) yiy; - (8.47)

The proof of (8.46) is given in the box below.

Proof We start by writing
TY = 0p(T™y7) — (RT™)y? = 0u(T™y7) + 0Ty , (8.48)
where we used 9,T"" = 0 in the second equality. Next, we consider

1 | 1 | o
TO(ZyJ) = 5ak(TOky’gﬂ) — 5(8kT0k)yzy] = 58,6(7“01“34’3/3) + 580T00y1yj . (8.49)
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In the integral over 3, we can drop the terms Jk(...) that are total spatial derivatives. We then get

_ L&
2 d?

y 1 o
[Ty =50 [ Sy 3y (t). (8.50)
P z

which is the claimed result.

Equation (8.46) describes how gravitational waves are created by the time-dependent quadrupole
moment of the matter source. Recall that electromagnetic waves are produced by a time-
dependent dipole (created by the separation of positive and negative charges). Dipole radiation
doesn’t exist in gravity, because there are no negative gravitational charges.

8.4 September 14, 2015

A new era of science was initiated on September 14, 2015. This was the day when the first
gravitational waves were observed by LIGO. The historic image of the first gravitational wave
event is shown in Fig. 42.
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Figure 42. Historic image of the signal from the first gravitational wave event detected on 14/09/2015.
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These gravitational waves were created billions of years ago by the merger of two black holes
in a distant galaxy. The initial masses of the two black holes were about 30 and 35 Solar masses.
The mass of the final black hole after the merger was 62 Solar masses. The difference in the
masses before and after the merger, 30 + 35 — 62 = 3 Solar masses was released as the energy of
gravitational waves. In fact, for a tiny fraction of a second, these colliding black holes released
more energy than all the stars in all the galaxies in the visible universe put together.

Since this remarkable event on September 14, 2015, many more black hole mergers have
been detected. All observed events are in perfect agreement with the predictions of GR. These
detections mark the beginning of multi-messenger astronomy and the birth of “precision gravity.”
This is a good place to end this course.
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A Elements of Special Relativity

Special relativity is based on a simple, yet profound, observation: the speed of light is the same
in all inertial reference frames and does not depend on the motion of the observer. From this
fact, Einstein deduced far-reaching consequences about the nature of space and time. In this
appendix, [ will provide a brief reminder of the basic concepts of special relativity.

A.1 Lorentz Transformations

In order for the speed of light to be the same in all inertial reference frames, the coordinates in
these frames must be related by a Lorentz transformation. Consider two inertial frames S and S’.
From the point of view of S, the frame S’ is moving with a velocity v in the z-direction. The
coordinates in S” are then related to those in S by the following Lorentz transformation:

t' =yt —vx/c),

2 =y(z —t),
, (A1)
y =y,

A

)

where v = 1/4/1 — v?/c? is the Lorentz factor. It is easy to confirm that the speed of light is the
same in both frames. Consider, for example, light traveling in the x-direction. In the frame S,
the light ray obeys = = ct. In S’, we then get 2’ = v(x — vt) = y(ct — vz/c) = ct'.

Note that time and space have been mixed by the Lorentz transformation. An analog of
this occurs for spatial rotations. Consider three-dimensional Euclidean space with coordinates
x = (z,y, 2) as defined in a frame S. A second frame S’ may have coordinates x' = (2, 1/, 2),
where x’ = Rx for some rotation matrix R. The two coordinate systems share the same origin
but are rotated with respect to each other. The coordinates in S’ have become a mixture of
the coordinates in .S. Similarly, Lorentz transformations can be thought of as rotations between
time and space. This mixing of space and time has profound implications: 1) Events that are
simultaneous in one frame are not simultaneous in another, 2) Moving clocks run slow (“time
dilation”), and 3) Moving rods are shortened (“length contraction”).

A.2 Spacetime and Four-Vectors

Although a rotation changes the components of the vector Ax connecting two points in space, it
will not change the distance |Ax| between the points. In other words, |Ax|? = Ax? + Ay? + Az?
is an invariant. Similarly, although time and space are relative, all observers will agree on the
spacetime interval

As? = A + Az? + Ay? + A2 (A.2)
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We can demonstrate this explicitly for the specific transformation in (A.1). Ignoring Ay and Az,
which just come along for the ride, the spacetime interval evaluated in the frame S’ is

As? = —2(Al)? + (Az')?
= —~2 (cAt — UA:J:/C)2 + ’yz(Al‘ - UAt)Q
= (¢ =) (A +97 (1 - 0*/) (Aa)?

= —PA + Ax?.

(A.3)

In general relativity, we will encounter the spacetime interval between points that are infinitesi-
mally close to each other. We then write the interval as

ds® = —c2dt* + da® + dy? + d2?, (A.4)

and call it the line element.

Note that As? is not positive definite. Two events that are timelike separated have As? <
0; they are closer in space than in time. In contrast, events with As? > 0 are said to be
spacelike separated. Finally, two events with As? = 0 are lightlike separated. These events can
be connected by a light ray. The set of all points that are lightlike separated from a point p
define its lightcone. Points that are timelike separated from p lie inside this lightcone. Spacelike
separated points are outside the lightcone. To respect causality a particle must travel on a
timelike path through spacetime. We call this path the particle’s worldline.

Given the intimate connection between time and space in relativity it makes sense to combine
them into a four-vector
at = (ct,x,y, 2), (A.5)

where the Greek index p runs from 0 to 3, and the zeroth component is time. To make the
symmetry between time and space even more manifest, I will from now on use units where the
speed of light is unity, ¢ = 1. The line element (A.4) can then be written as

ds? = nydrtdz” (A.6)
where 7, is the Minkowski metric
—-1000
|
0 001

In (A.6), we used Einstein’s summation convention which declares repeated indices to be summed
over.

Under a Lorentz transformation the spacetime four-vector transforms as

XM =AM XY (A.8)
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where A", is a 4 x 4 matrix. For the specific transformation in (A.1), we have

v —ywv 00
—yv v 00
AF, = A9
Y 0 0 10 (4.9)
0 0 01
In general, the invariance of the line element (A.6) requires that
Noo = AMPAVUmw ) (A.10)

and the set of matrices satisfying this constraint define the Lorentz group.

The metric can also be used to lower the index of the vector z* to produce the component of
the dual co-vector
LTy = an$V = (_t; x,Y, Z) . (A.ll)
Sometimes z,, is called a covariant vector, while z# is a contravariant vector. To raise an index,
we need the inverse metric n*¥, defined by n#*n,, = 6., so that z# = n*”z,. An important
co-vector is the differential operator
0
-y

which appears frequently in relativistic equations of motion.

= (04, 03,0y, 02) , (A.12)

The inner product of a vector and a co-vector is
rr, =2+ x-x. (A.13)

In order for this inner product to be Lorentz invariant, the components of a co-vector must
transform as

X, = (A"uX,, (A.14)
where (A71)¥, is the inverse of A¥,.

A natural generalization of vectors and co-vectors are tensors. A tensor of rank (m,n) has
m contravariant (upper) indices and n covariant (lower) indices:

THYHm - (A.15)
The transformation of such a tensor is what you would guess from its indices
(T,)“lm'ul/l..-,un = A'ulo'l U (A_l)plm o Tal'..amplmpn . (A16)

The most complicated tensors one encounters in special relativity are the electromagnetic field
strength F),, and the energy-momentum tensor 7),, (see below). In general relativity, the most
complicated tensor is the Riemann tensor I, .

Why are tensors important? If a physical law can be written in the form of spacetime tensors,
it means that it holds in any reference frame. In other words, if the law is true in one inertial
frame, it will be true in any Lorentz-transformed frame. Newton’s laws cannot be written in the
form of spacetime tensors and therefore are not consistent with relativity. Maxwell’s equations,
on the other hand, can be written in tensorial form and therefore are consistent with relativity.
This is not an accident. Einstein was motivated by Maxwell’s equations because they imply that
the speed of light should be independent of the motion of the observer.
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A.3 Relativistic Kinematics

Consider a massive particle moving through spacetime. The trajectory of the particle is specified
by the function x#()\), where X is a parameter labelling the points along the particle’s worldline.
What should we choose for the parameter A? One option is to use the time experienced by
the particle called the proper time. Going to the rest frame of the particle, where its spatial
coordinates are constants, we have

dr? = —ds*. (A.17)

Note that d72 > 0 for a timelike trajectory. Just like the interval ds?, the proper time is something
that all inertial observers will agree on. In a general frame, the spatial position x of the particle
will be a function of the time . In terms of these coordinates, the differential of the proper time
is
dx\ > dt
dr = \/dt? —dx? = dt 1_<dt> :dt\/l—’lﬂ:;. (A.18)
Integrating this gives the proper time along the trajectory in terms of the background coordinates.

Given the function z#(7), we can define the four-velocity of the particle

_dat

= """
U= (A.19)

Since 7 is a Lorentz invariant, U* transforms in the same way as x* and is therefore also a
four-vector. In contrast, dz*/dt is not a four-vector, since both z# and ¢ change under a Lorentz
transformation. Since U# is a four-vector, the inner product U*U, is a Lorentz invariant. In
fact, it is easy to show that U*U, = —1. Finally, it follows from (A.18) that the four-velocity in
a general frame is

Ut =~(1,v), (A.20)

while in the rest frame of the particle it becomes U* = (1,0, 0,0).

Another important quantity is the four-momentum
Pt =mU", (A.21)

where m is the mass of the particle. Given (A.20), we have P* = ym(1,v). The spatial part gives
of the relativistic generalization of the three-momentum, p = ymv, while the time component is
the energy of the particle F = ym. In the rest frame of the particle, we have P* = (mc,0,0,0)
and hence

P'P, = —m?c?. (A.22)

Since the inner product is an invariant, it takes the same value in any frame. Using P* = (E/c, p'),

we also have
PtP, = —-FE*/ 4+ p?, (A.23)

so that (A.22) implies
E? = p*c® + m?ct. (A.24)

This is the generalization of the famous E = mc? to include kinetic energy.
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So far, we have only described massive particles. What about massless particles? Massless
particles travel on lightlike trajectories with ds? = 0. The proper time therefore vanishes and
our analysis above brakes down. However, the result in (A.24) still holds in the massless limit

E=+/p?+m?—|p|. (A.25)

The four-momentum therefore is P* = (|p|, p), with P*P, = 0.

where it gives

A.4 Relativistic Dynamics

We are often interested not in the motion of individual particles, but in the coarse-grained
dynamics of a large collection of particles. In other words, instead of tracking the positions of
each particle, we want to follow the evolution of average quantities, such as the number density
n, energy density p and pressure P. We will now discuss how these quantities are described in
relativity.

Number density

Consider a box of volume V centered around a position x. The box contains N particles, so the
density of particles is n = N/V. Taking the box size to be small, we can think of this as the
local density at the point x. Clearly, this number density is not a relativistic invariant. To see
this, consider a frame S’ in which the box is moving with a velocity v. The dimension of the
box will be Lorentz contracted along the direct of travel, so its volume now is V/ = V/v. Since
the number of particles inside the box stays the same, the number density in this frame will be
n' = yn. Using (A.20), we may also write this as

n' =nUY, (A.26)

where n is the number density in the rest frame of the box and U” is the time component of
the four-velocity of the box. This suggests that the number density is the time component of a
four-vector called the number current:

Nt =nU". (A.27)

This four-vector has components N# = (n’,n’), where we reserve n (without the prime) for the
density in the rest frame. The spatial part is the number current density, n’ = ynv. Given an
area dA, the inner product n’ - dA describes the number of particles flowing across the area per
unit time.

Since particles are neither created, nor destroyed, the number density only changes if particles
flow in or out of the volume. Locally, this is described by the following continuity equation

on’
—=-V.n. A.28
at " (A.28)
Using the number current four-vector, this equation can be written as
OuN* =0, (A.29)

where 0, was defined in (A.12).
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Energy-momentum tensor

Of particular importance in general relativity are the densities of energy and momentum, since
these are the sources for the curvature of the spacetime.

As we have seen above, energy and momentum are closely related as the time and space
components of the momentum four-vector P#. We would now like to write the energy and
momentum densities as the time components of four-vector currents. We then combine these
currents into a single object, T9%, where T% is the density of the energy and 7% is the density of
the momentum (in the direction ). As you may guess from the double index, we are building
a new rank-2 tensor T called the energy-momentum tensor. The second index tells us
whether we are talking about the energy (v = 0) or the momentum (v = 7). The first index tells
us whether we are talking about the density (1 = 0) or the flow (1 = 4). Hence, we have

T% = density of energy, T = flow of energy
T% = density of momentum, 77¢ = flow of momentum

Note that each component of the momentum has its own flux. For example, T'2 is the flow of the

r?-momentum along the z!-direction. The flow of the momentum density creates a stress (= force

per unit area) and 7% is therefore often called the stress tensor. Its diagonal components are
the pressure and the off-diagonal components are the anisotropic stress. Integrating the densities
over space gives the total energy and momentum, or PV = [ d3z T%. By analogy with (A.29),
we write the following conservation equation for the energy-momentum tensor

0,T" =0. (A.30)
These are four equations: one for the energy density (v = 0) and three for the components of the

momentum density (v = 1i).

As a simple example, let us return to our particles in the box. Ignoring the kinetic energies
of the individual particles, the total energy density in the rest frame is p = mn. In the boosted
frame, the energy and the number density each increase by a factor of «, so that p’ = ~?p.
Similarly, the momentum density becomes 7* = 42pv’. Using (A.20), we may also write this as

o = pUU°, (A.31)

= pUU", (A.32)
where p is the energy density in the rest frame. A natural guess for the energy-momentum tensor
of the particles inside the box therefore is

T = pUrUY (A.33)

where T = (p/, 7).

If we include the random motion of the particles, the energy-momentum gets an extra contri-
bution from the pressure P created by this motion. Since the pressure is isotropy, the energy-
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momentum tensor in the rest frame must be diagonal:

p 000
0P 0O
™ = . A.34
00PO ( )
000P
In a general frame, this becomes
™ = (p+ P)U*UY + PnM. (A.35)

This is the energy-momentum tensor of a perfect fluid. It plays an important role in cosmology,
since on large scales all matter can be modeled by perfect fluids.

Relativistic field theory

In modern physics, fields are fundamental and particles are a derived concept arising as exci-
tations of fields. The Standard Model of particle physics is a relativistic quantum field theory.
Even in classical physics, fields—Ilike the gravitational field and the electromagnetic field—play an
important role. In the following, I will briefly describe the dynamics of fields in special relativity.

Consider a field ¢,(t,x), where a is a discrete label that characterizes the type of field—
e.g. the electromagnetic four-vector field A, has four components, so a takes on four values. The
Lagrangian of the field is a functional of the field ¢, and its spacetime derivative 9,,¢:

L= / B L(ba, Opba) (A.36)

where £ is the “Lagrangian density” (but we will follow standard practice and often simply call
it the Lagrangian). The action is the integral of the Lagrangian between two times t; and to:

to
S = dt/d%ﬁz /d‘{m. (A.37)
t1

The evolution of the field configuration ¢, (t,x) between t; and to follows from the principle of
least action. Consider an infinitesimal change of the field, ¢, — ¢¢ + d¢po. The corresponding
variation of the action is

08 = Slp + 0] — S[9]

— / diz {%5% + %5@%)} (A.38)
Joelfge o (o (i) v

where the second term in (A.38) has been integrated by parts. The last term in (A.39) is a total
derivative and vanishes for any variation d¢, that decays at spatial infinity and which obeys
0¢a(t1,x) = 0y (te, x) = 0. Setting 05 = 0 then leads to the Euler-Lagrange equation

oL or
o <6<8u¢a)) T 06a 0l (A.40)
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Note that this is one equation for each component of the field.

In cosmology, we will often deal with real scalar fields ¢(¢,x). Such fields have a “kinetic
energy” (density) %(].52, a “gradient energy” %(V(;S)Z and a “potential energy” V(¢). The kinetic

and gradient energies can be combined into a Lorentz-invariant “kinetic term”

1 1. 1
- 577“”8;@31/(15 = §¢2 - §(V¢)2,

(A.41)

which is often abbreviated as %(&b)g. The full Lagrangian density takes the form of “kinetic

minus potential energy”:
1
L= 50" 0u00,6 ~V(9),
Substituting

oL oL A%
= — MY —_— ——
" 0,¢ and 96 i

into the Euler-Lagrange equation (A.40), we obtain the Klein-Gordon equation

av

DQZ):_% )

where [0 = —n*”0,,0, is the d’Alembertian operator.
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