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Recommended Books and Resources

There are many excellent textbooks on GR. The ones I am most familiar with are:

• Carroll, Spacetime and Geometry

• Schutz, A First Course in Relativity

• Hartle, An Introduction to Einstein’s General Relativity

• Zee, Einstein Gravity in a Nutshell

• Wald, General Relativity

• Weinberg, Gravitation and Cosmology

• Misner, Thorne and Wheeler, Gravitation

Useful mathematical background is given in

• Schutz, Geometrical Methods in Mathematical Physics

• Nakahara, Geometry, Topology and Physics

In addition, there are many fantastic lecture notes:

• Tong, General Relativity

• Reall, General Relativity

• Lim, General Relativity

• McGreevy, General Relativity

Finally, there are also many nice popular books on the subject. Here are a few:

• Thorne, Black Holes and Time Warps

• Ferreira, The Perfect Theory

• Will and Yunes, Is Einstein Still Right?

• Isaacson, Einstein: His Life and Universe

These notes are based mostly on the book by Carroll and the lecture notes of Tong, Reall and

Lim. I am also following closely the structure of a previous version of this course taught by

Alejandra Castro. My notes were written in record speed, so please beware of typos.
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1 Gravity is Geometry

1.1 What’s Wrong With Newton?

Why do we need a better theory of gravity than Newton’s? At an observational level, it is

because Newtonian gravity fails at a certain level of accuracy; for example, for predicting the

orbit of Mercury. More conceptually, Newtonian gravity is in conflict with the fundamental

principle of special relativity that no signal should travel faster than light. We will start there.

Consider a particle of mass m in a gravitational field Φ(x, t) (see Fig. 1). The force it experi-

ences is given by F = −m∇Φ, where the gravitational field satisfies the Poisson equation

∇2Φ = 4πGρ . (1.1)

The Green’s function solution to the Poisson equation is

Φ(x, t) = −G
∫

d3x′
ρ(x′, t)
|x− x′| , (1.2)

which describes how a matter distribution with mass density ρ(x, t) creates the potential. Of

course, this reduces to the familiar potential Φ = −GM/r for a localized spherically symme-

try mass density, ρ = MδD(r). The problem with this is that a change in ρ(x, t) propagates

instantaneously throughout space in obvious violation of relativity. A related problem is that

the Poisson equation is not a tensorial equation, so it depends on the reference frame. Lorentz

transformations mix up time and space coordinates. Hence, if we transform to another inertial

frame then the resulting equation would involve time derivatives. The above equation therefore

does not take the same form in every inertial frame. This is another way of seeing that Newtonian

gravity is incompatible with special relativity.

A similar issue arises in Coulomb’s law of electrostatics. In particular, the equation for the

electric potential φ takes a very similar form,

∇2φ = −ρe
ε0
, (1.3)

where ρe(x, t) is the charge density. A change in the charge density would therefore also be expe-

rienced instantaneously throughout space. Of course, in the case of electrostatics, we know that

ρ(x, t)

m

F

Figure 1. In Newtonian gravity a change in a mass distribution ρ(x, t) results in an instantaneous change

in the force on an object, which violates relativity.
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the resolution are the Maxwell equations of electrodynamics, which can be written in tensorial

form using the vector potential Aµ = (φ,A) and the vector current Jµ = (ρe,Je):

∂νF
µν = Jµ , (1.4)

where Fµν = ∂µAν − ∂νAµ. Our challenge will be to find the analog of Maxwell’s equations for

gravity.

1.2 The Equivalence Principle

The origin of general relativity lies in the following simple question: Why do objects with different

masses fall at the same rate? We think we know the answer: the mass of an object cancels in

Newton’s law

��m a = ��m g , (1.5)

where g is the local gravitational acceleration. However, the meaning of ‘mass’ on the left-hand

side and the right-hand side of (1.5) is quite different. We should really distinguish between the

two masses by giving them different names:

mI a = mG g . (1.6)

The gravitational mass, mG, is a source for the gravitational field (just like the charge qe is a

source for an electric field), while the inertial mass, mI , characterizes the dynamical response

to any forces. In the case of the electric force, you wouldn’t be tempted to cancel qe and mI . It

is therefore a nontrivial result that experiments find1

mI

mG
= 1± 10−13 . (1.7)

In Newtonian gravity, this equality of inertial and gravitational mass has no explanation and

appears to be an accident. In GR, on the other hand, the observation that mI = mG is taken to

be a fundamental property of gravity called the weak equivalence principle (WEP).

There are two other forces which are also proportional to the inertial mass. These are

Centrifugal force : F = −mIω × (ω × r) .

Coriolis force : F = −2mIω × ṙ .
(1.8)

In both of these cases, we understand that the forces are proportional to the inertial mass because

these are “fictitious forces” in a non-inertial frame. (In this case, one that is rotating with

frequency ω). Could gravity also be a fictitious force, arising only because we are in a non-

inertial reference frame?

An important consequence of the equivalence principle is that gravity is “universal,” meaning

that it acts in the same way on all objects. Consider a particle in a gravitational field g. Using

the WEP, the equation of motion of the particle is

ẍ = g(x(t), t) . (1.9)

1Note that (1.6) defines both mG and g. For any given material, we can therefore define mG = mI by the

rescaling g → λg and mG → λ−1mG. What is nontrivial is that (1.7) then holds for other bodies made of other

materials.
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e− p+E
M m

g

Earth

a
M m

Empty space

Figure 2. Illustration of Einstein’s famous thought experiment showing that a uniform gravitational

field (left) is indistinguishable from uniform acceleration (middle). This is to be contrasted with the case

of an electric field (right) which acts differently on opposite charges and hence cannot be mimicked by

acceleration.

Solutions of this equation are uniquely determined by the initial position and velocity of the

particle. Any two particles with the same initial position and velocity will follow the same

trajectory. As we will see, this simple observation has far reaching consequence.

Imagine being confined to a sealed box. Your challenge, if you chose to accept it, is to determine

the physical conditions outside the box by performing experiments inside the box. Consider first

the case where the box is sitting in an electric field. How could you tell? Easy, just study the

motion of an electron and a proton. Because these particles have opposite charges they will

experience forces in opposite directions (see Fig. 2). However, the same does not work for gravity.

Since the gravitational charge (i.e. mass) is the same for all objects, two test particles with

different masses will fall in exactly the same way. But, the particles are still falling, so haven’t we

detected the gravitational field? This is where Einstein’s genius comes in. He pointed out that

the motion of the two particles would be exactly the same if instead of sitting in a gravitational

field, the box was actually in empty space but accelerating at a constant rate a = −g (see Fig. 2).

The two particles will fall to the ground as before, but this time not because of the gravitational

force, but because the box is accelerating into them. We conclude that:

A uniform gravitational field is indistinguishable from uniform acceleration.

A corollary of this observation is the fact that the effects of gravity can be removed by going to

a non-inertial reference frame, like for the fictitious forces shown in (1.8). In particular, if the

box is freely falling in the gravitational field (i.e. its acceleration is a = g) then the particles in

g
M m

Figure 3. In a freely falling frame objects do not experience the gravitational force.
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Earth

Lab frame

Figure 4. Illustration of tidal forces arising from the inhomogeneous gravitational field of the Earth.

These forces cannot be removed by going to the freely falling “lab frame.”

the box will not fall to the ground. Einstein called this his “happiest thought”: a freely falling

observer doesn’t feel a gravitational field (see Fig. 3).

What about other experiments you could do (not just dropping test particles)? Could they

discover the presence of a gravitational field? Einstein said no. There is no experiment—of

any kind—that can distinguish uniform acceleration from a uniform gravitational field. This

generalization of the WEP is called the Einstein equivalence principle (EEP). It implies

that, in a small region of space (so that the gravitational field is approximately uniform), you

can always find coordinates so that there is no acceleration. These coordinates correspond to a

local inertial frame where the spacetime is approximately Minkowski space. Said differently:

In a small region of spacetime, the laws of physics reduce to those of special relativity.

As we will see, the EEP suggests that the effects of gravity are associated with the curvature

of spacetime which becomes relevant on larger scales where the field cannot be approximated as

being uniform.

In arguing for the equivalence between gravity and acceleration it was essential that we re-

stricted ourselves to uniform fields over small regions of space. But what if the gravitational field

is not uniform? Consider a box that is freely falling towards the Earth (see Fig. 4). We again

drop two test particles. The gravitational attraction between the particles is minuscule and can

therefore be neglected. Nevertheless, the two particles will accelerate towards each other because

they each feel a force pointing towards the center of the Earth. This is an example of a tidal

force, arising from the non-uniformity of the gravitational field. These tidal forces are the real

effects of gravity that cannot be canceled by going to an accelerating frame. Note that tidal

forces cause initially “parallel” trajectories to become non-parallel. As we will see, this violation

of Euclidian geometry is a manifestation of the curvature of spacetime.

1.3 Gravity as Curved Spacetime

We have by now hinted several times at the fact that gravity should be interpreted as spacetime

curvature. This is such an important feature of our modern understanding of gravity that it is
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Alice

Bob

Figure 5. Setup of the Pound-Rebka experiment. Light emitted by Alice is received with longer wave-

length by Bob.

worth belaboring the point. In the following, I will give a simple argument which will link the

equivalence principle rather directly to the curvature of spacetime.

Let me begin by describing a famous observational consequence of the equivalence principle,

the gravitational redshift. Consider Alice and Bob in a uniform gravitational field of strength

g in the negative z-direction (see Fig. 5). They are at heights zA = 0 and zB = h, respectively.

Alice sends out a light signal with wavelength λA = λ0. What is the wavelength λB received by

Bob? By the equivalence principle, we should be able to obtain the result if we take Alice and

Bob to be moving with acceleration g in the positive z-direction in Minkowski spacetime (see

Fig. 6). Assuming ∆v/c to be small, the light reaches Bob after a time ∆t ≈ h/c. By this time,

Bob’s velocity has increased by ∆v = g∆t = gh/c. Due to the Doppler effect, the received light

will therefore have a slightly longer wavelength, λB = λ0 + ∆λ, with

∆λ

λ0
=

∆v

c
=
gh

c2
. (1.10)

By the equivalence principle, light emitted from the ground with wavelength λ0 must therefore

be “redshifted” by an amount

∆λ

λ0
=

∆Φ

c2
, (1.11)

a

Alice

Bob

Figure 6. By the equivalence principle, the result of the Pound-Rebka experiment should follow from the

Doppler shift of the light in an accelerating frame.
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where ∆Φ = gh is the change in the gravitational potential. This gravitational redshift was first

measured by Pound and Rebka in 1959. Although we derived (1.11) for a uniform gravitational

field, it holds for a non-uniform field if ∆Φ is taken to be the integrated change in the gravitational

potential between the two points in the spacetime.

We can also think of the gravitational redshift as an effect of time dilation. The period of

the emitted light is TA = λA/c and that of the received light is TB = λB/c. The result in (1.11)

then implies that

TB =

(
1 +

ΦB − ΦA

c2

)
TA . (1.12)

We conclude that time runs slower in a region of stronger gravity (smaller Φ). In the example

above, we have ΦA < ΦB (Alice feels a stronger gravitational field than Bob), so that TA < TB
(time runs slower for Alice than for Bob). Although our thought experiment involved light signals,

the result holds for any type of clock in a gravitational field. It therefore also applies to the heart

rate of the observer. In our example this means that Alice will see Bob aging more rapidly. This

“gravitational twin paradox” has been tested with atomic clocks on planes.2

Let us finally see why all of this implies that spacetime is curved. Consider the same setup as

before. Alice now sends out two pulses of light, separated by a time interval ∆tA (as measured

by her clock). Bob receives the signals spaced out by ∆tB (as measured by his clock). Figure 7

shows the corresponding spacetime diagram. Since the gravitational field is static, the paths

taken by the two pulses must have identical shapes (whatever that shape may be). But, this then

seems to imply that ∆tB = ∆tA, in apparent contradiction to (1.12). What happened? When

drawing the congruent wordlines in Fig. 7 we implicitly assumed that the spacetime is flat. The

resolution to the paradox is to accept that the spacetime is curved.

To see this more explicitly, consider a spacetime in which the interval between two nearby

events is not given by ds2 = −c2dt2 + dx2, but by

ds2 = −
(

1 +
2Φ(x)

c2

)
dt2 + dx2 , (1.13)

with Φ� c2. In these coordinates, Alice sends signals at times tA and tA + ∆t, and Bob receives

them at tB and tB + ∆t. Note the the spacetime diagram is still that shown in Fig. 7, with two

congruent worldlines. However, although the coordinate interval ∆t is the same for Alice and

Bob, their observed proper times are different. In particular, the proper time interval between

the signals sent by Alice is

∆τA =
√
−g00(x) ∆t =

√
1 +

2ΦA

c2
∆t ≈

(
1 +

ΦA

c2

)
∆t , (1.14)

2Accounting for time dilation effects is also essential for the successful operation of the Global Positioning

System (GPS). The satellites used in GPS are about 20 000 km above the Earth where the gravitational field is

four times weaker than that on the ground. Because of the gravitational time dilation, the clocks on the satellites

tick faster by about 45µs per day. Correcting for the relativistic time dilation due to the motion of the orbiting

clocks (at about 14 000 km/hr), the net effect is 38µs per day. This is a problem. To achieve a positional accuracy

of 15 m, time throughout the GPS system must be known to an accuracy of 50 ns (the time required for light to

travel 15 m). If we didn’t correct for the effects of time dilation, the GPS would accumulate an error of about

10 km per day. Said differently, the accuracy we expect from the GPS would fail in less than 2 minutes.
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∆tA
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Figure 7. Spacetime diagram showing the wordlines of two light pulses. In a static spacetime, the

worldlines must have identical shapes and hence ∆tA = ∆tB .

where we have used that ∆x = 0 and expanded to first order in small ΦA. Similarly, the proper

time between the signals received by Bob is

∆τB ≈
(

1 +
ΦB

c2

)
∆t . (1.15)

Combining (1.14) and (1.15), we find

∆τB =

(
1 +

ΦB

c2

)(
1 +

ΦA

c2

)−1

∆τA ≈
(

1 +
ΦB − ΦA

c2

)
∆τA , (1.16)

which is the same as (1.12). The time dilation has therefore been explained by the geometry of

spacetime.
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2 Some Differential Geometry

Since gravity is a manifestation of the geometry of spacetime, we will start this course by devel-

oping the necessary mathematical background to describe curved spaces and, ultimately, curved

spacetime. Our treatment won’t be rigorous, meaning that we will not prove anything the way

mathematicians would. The purpose of this chapter is to understand what kind of objects can

live on curved spaces and the relationships between them.

2.1 Manifolds and Coordinates

2.1.1 What is a Manifold?

You should be familiar some basic manifolds, although you might not have used the term before.

For example, Euclidean space Rn is a manifold. A circle S1 and a sphere S2 are manifolds.

So is the torus T 2. The higher-dimensional generalizations of the sphere and torus, Sn and

Tn, are all manifolds. In general, manifolds are smooth curves and surfaces, as well as their

higher-dimensional generalizations. More abstractly, the set of continuous rotations in Euclidean

space also forms a manifold, Lie groups are manifolds, the phase space of classical and quantum

mechanics, as well as the space of thermodynamic equilibrium states, are all manifolds. What

all of these examples have in common is that they are continuous spaces, rather than a lattice of

discrete points. Let us therefore start with the following vague definition of a manifold:

An n-dimensional manifold M is a continuous space that looks locally like Rn. The different

patches of the manifold can be smoothly sewn together.

We will soon be more precise about the meaning of “looks like” and “smoothly sewn together.”

In general relativity, we describe spacetime as a Lorentzian manifold which is a manifold

that locally looks like four-dimensional Minkowski space, R1,3. This guarantees that the theory

reduces to special relativity in small regions of spacetime and therefore satisfies the equivalence

principle. For now, I will continue to talk about Euclidean manifolds, that look locally like Rn,

but all concepts will generalize straightforwardly.

2.1.2 Coordinate Charts

You are familiar with the concept of coordinates as a set of real numbers (x1, . . . , xn) that label

each point on the manifold. We will now review this in a slightly more formal language.

Coordinates are maps between an open set of points U on M and points on Rn (see Fig. 8):

φ : U 7→ Rn . (2.1)

The map φ is also called a (coordinate) chart. In general, we need more than one chart to

cover the entire manifold. The collection of all charts φα is called an atlas.

11



M

U
p

Rn

ϕ

Figure 8. Coordinates are a map φ from points p in an open set U ∈M to Rn.

For every point p ∈ U , we have

φ(p) = (x1(p), . . . , xn(p)) . (2.2)

We will also use the shorthand xµ(p), with µ = 1, . . . , n for Euclidean manifolds and µ = 0, . . . , n−
1 for Lorentzian manifolds. We will always assume that the map is invertible, in which case the

inverse map φ−1(xµ(p)) exists and gives you the point p on M .

We require that all charts are compatible in the regions of overlap. For concreteness, consider

two charts φ1 and φ2 which define two sets of coordinates, xµ(p) and yµ(p). For points in the

overlap region, we can define the composite maps φ2 ◦ φ−1
1 and φ1 ◦ φ−1

2 (also called transition

functions) which map points from Rn to Rn (see Fig. 9). These maps are simply a fancy way of

describing the coordinate transformations yµ(x) and xµ(y), respectively. The maps φ1 and

φ2 are compatible if these coordinate transformations are smooth (differentiable) functions.

M

U1

U2

Rn

xµ

ϕ2 ◦ ϕ−1
1

Rn

yµ

ϕ1
ϕ2

Figure 9. In general, multiple coordinate charts are needed to cover a manifold. Here, we show two charts

φ1 and φ2 defining two sets of coordinates, xµ(p) and yµ(p). The composite map φ2 ◦ φ−1
1 corresponds to

the coordinate transformation yµ(x).
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2.1.3 Examples

To make this discussion a bit less abstract, let me give a few examples of manifolds and the

associated coordinate charts:

• S1: The unit circle is defined as the set of points with fixed distance from the origin in R2,

x2 + y2 = 1, which we can also write as

x = cos θ , y = sin θ . (2.3)

You must be used to taking θ ∈ [0, 2π) and moving on with your life. However, there is a

small issue with the chart not being define on a open set. The limit θ → 0 is only defined

from one side, which causes problems if we want to differentiate a function at θ = 0. For

this reason, we need at least two charts to cover S1.

Consider the two antipodal points q1 = (1, 0) and q2 = (−1, 0) (see Fig. 10). By removing

these two points from the circle, we can define the two open sets U1 ≡ S1 − {q1} and

U2 ≡ S2 − {q2}. The following two charts then cover the whole circle

φ1 : U1 7→ (0, 2π) (2.4)

φ2 : U2 7→ (−π, π) (2.5)

The two charts overlap on the upper and lower semi-circles. The transition function is

θ2 = φ2(φ−1
1 (θ1)) =

{
θ1 if θ1 ∈ (0, π)

θ1 − 2π if θ1 ∈ (π, 2π)
(2.6)

Note that the transition function is only defined on the overlap of the two charts, i.e. it

isn’t defined at θ = 0 (corresponding to the point q1) and θ = π (corresponding to q2). It

is obviously a smooth function on each to the two open intervals.

θ1

ϕ1

0 2π

q1
θ2

ϕ2

−π π

q2

Figure 10. Illustration of the two coordinate charts of the unit circle. The map φ1 excludes the point q1,

while φ2 excludes q2.
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• S2: The unit sphere is the set of points with fixed distance from the origin in R3, x2 + y2 +

z2 = 1, which we can also write as

x = sin θ cosφ , y = sin θ sinφ , z = cos θ . (2.7)

Again, you are probably used to taking θ ∈ [0, π] and φ ∈ [0, 2π) and be done with it.

However, as for the circle, we have to face the fact that this doesn’t correspond to an open

set. Using (2.7) with θ ∈ (0, π) and φ ∈ (0, 2π) defines the chart φ1 illustrated in Fig. 11.

This chart misses the line of longitude defined by y = 0 and x > 0. To cover the whole

sphere, we need a second chart. For example, we can define a chart φ2 using a different set

of spherical polar coordinates:

x = − sin θ′ cosφ′ , y = cos θ′ , z = sin θ′ sinφ′ , (2.8)

with θ′ ∈ (0, π) and φ ∈ (0, 2π). This chart misses half of the equator (the line defined by

z = 0 and x < 0). The union of φ1 and φ2 defines an atlas for the sphere. It would be easy

to check that the transition functions φ1 ◦ φ−1
2 and φ2 ◦ φ−1

1 are smooth functions.

x

y

zϕ1

x

y

zϕ2

Figure 11. Illustration of the two coordinate charts of the unit sphere.

2.2 Functions, Curves and Vectors

Having introduced manifolds, we now proceed to define various kinds of structures on them. The

simplest object we can define on a manifold is a function.

A function is a map (see Fig. 12)

f : M 7→ R , (2.9)

which assigns a real number to each point on the manifold. Introducing a coordinate chart

φ in a region U ∈ M , the composite map f ◦ φ−1 gives f(xµ), which describes the function

in terms of coordinates on φ(U) ∈ Rn.
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M

U

f

f ◦ ϕ−1

Rn

R

ϕ

Figure 12. A function f is a map from M to R. Introducing a coordinate chart φ, the function is given

by f ◦ φ−1 (or f(xµ)).

In GR, such functions are sometimes called a scalar fields. A function is called smooth if f ◦φ−1

is a smooth function for any chart φ.

Next, we want to define vectors on a manifold. This turns out to be a bit more tricky. You all

have a notion of vectors on Rn as arrows stretching between points. Unfortunately, this picture

does not generalize to curved manifolds. Even worse, thinking about vectors in this way doesn’t

make any sense for general manifolds and can lead to confusion. As we will now discuss, vectors

are not defined on the manifold itself. Moreover, a vector does not stretch from one point on the

manifold to another. Instead, a vector is an object associated to a single point.

A better definition of vectors is terms of tangent vectors along curves on the manifold. To

build up to this definition, we first first have to introduce the concepts of curves and directional

derivatives. We will do this one by one.

A curve is defined by the map (see Fig. 13)

γ : I 7→M , (2.10)

where I is an open interval on R. This labels each point along the curve γ by a parameter

λ ∈ I. The composite map φ ◦ γ defines xµ(λ), which describes the curve in terms of

coordinates on Rn.

Now let f : M 7→ R and γ : I 7→ M be a smooth function and a smooth curve, respectively.

The function along the curve is then defined as the following composite map (see Fig. 14):

f ◦ γ : I 7→ R (2.11)

15



M

p
I

γ

Rn

ϕ

xµ(λ)

Figure 13. A curve γ on a manifold M is defined by a map from points on an interval I ∈ R to M .

Introducing a coordinate chart φ, the curve is represented by φ ◦ γ (or xµ(λ)).

Introducing a coordinate chart φ, we can also write this as

f ◦ γ = (f ◦ φ−1)︸ ︷︷ ︸
f(xµ)

◦ (φ ◦ γ)︸ ︷︷ ︸
xµ(λ)

, (2.12)

which is a complicated (but more precise) way of writing f(xµ(λ)), the coordinate representation

of the function along the curve. Note that f ◦ γ is defined independently of our choice of coordi-

nates, while f(xµ(λ)) depends on the coordinates. The latter is made explicit by the appearance

of the coordinate chart φ in (2.12).

Taking a derivative of (f ◦ γ)(λ) with respect to the parameter λ gives the rate of change of

the function along the curve:

d

dλ
((f ◦ γ)(λ)) =

d

dλ
f(γ(λ)) , (2.13)

which is also called a directional derivative. You should be familiar with the fact in Rn the

rate of change of a function f along a curve is given by the directional derivative vp · (∇f)p,

where vp is the tangent vector to the curve at the point p. Mathematicians think of the vector

vp as defining a linear map from the space of smooth functions on Rn to R: f 7→ vp · (∇f)p. It

is this point of view that generalized easily to the case of a curved manifold.

p

Vp

I

γ

R

f

f ◦ γ

Figure 14. The composite map f ◦ γ defines a function along the curve. The directional derivative of

this function defines the tangent vector along the curve, Vp(f) = df/dλ.
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The tangent vector to the curve γ at the point p is defined by (see Fig. 14)

Vp(f) =
d

dλ
f(γ(λ))

∣∣∣∣
p

≡ df

dλ
. (2.14)

Since the function f is arbitrary, we can even write Vp ≡ d/dλ and think of the vector as a

linear map from the space of smooth functions on M to R.

Our definition of a tangent vector satisfies two important properties: 1) it is linear, meaning

that

Vp(af + bg) = aVp(f) + bVp(g) , (2.15)

where f and g are functions and a and b are real numbers; 2) it satisfies the Leibniz rule:

Vp(fg) = Vp(f)g + fVp(g) . (2.16)

We can used these properties to prove that the set of all vectors at a point p forms an n-

dimensional vector space, called the tangent space Tp(M).

Proof. Consider two curves γ and κ going through p, with γ(0) = p and κ(0) = p (see Fig. 15).

Their tangent vectors at p are Vp and Up, respectively. We first want to show that the new vector

Wp ≡ aVp + bUp is also a tangent vector to a curve through p. The new vector is obviously also

a linear map, so we just need to show that it satisfies the Leibniz rule:

Wp(fg) = (aVp + bUp)(fg) = a [Vp(f)g + fVp(g)] + b [Up(f)g + fUp(g)]

= [aVp(f) + bUp(f)] g + f [aVp(g) + bUp(g)]

= Wp(f)g + fWp(g) .

(2.17)

The tangent vectors therefore span a vector space.

p

Vp

Up

γ

κ

Figure 15. Tangent vectors span the n-dimensional tangent space Tp(M).

To prove that the space is n-dimensional, we introduce a basis. Let 1 ≤ µ ≤ n, and consider

the set of curves γµ through p defined by

φ ◦ γµ = (x1(p), . . . xµ−1(p), xµ(p) + λ, xµ+1(p), . . . , xn(p)) . (2.18)
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The corresponding tangent vector at p is the ordinary partial derivative(
∂

∂xµ

)
φ(p)

≡ ∂µ . (2.19)

If you think about it, this is how partial derivatives are defined: a partial derivative with respect

to µ is the directional derivative along a curve defined by xν = const. for all ν 6= µ. We now just

need to show that the ordinary partial derivatives span the tangent space, i.e. any tangent vector

Vp = ∂/∂λ can be expressed in terms of partials ∂µ. Using the chain rule, we can write (2.14) as

Vp(f) =
df

dλ
=

d

dλ
f(γ(λ))

=
d

dλ

(
(f ◦ φ−1)︸ ︷︷ ︸
f(xµ)

◦ (φ ◦ γ)︸ ︷︷ ︸
xµ(λ)︸ ︷︷ ︸

f(xµ(λ))

)

=
dxµ

dλ

∂f

∂xµ
.

(2.20)

Since the function f was arbitrary, we have

d

dλ
=
dxµ

dλ
∂µ . (2.21)

The partial derivatives with respect to the coordinates therefore indeed define a basis for the

vector space called the coordinate basis. This completes the proof that the tangent space

Tp(M) is an n-dimensional vector space. �

Note that this vector space is only defined at the point p. At a different point q, we would have

a different tangent space Tq(M). It therefore make no sense to add vectors at different points;

they live in different tangent spaces. To compare two vectors at separated points, we still need

to learn how to map vectors from one tangent space to another (see Section 4). A collection of

vectors at each point on the manifold defines a vector field. The set of all tangent spaces of the

manifold is the tangent bundle, T (M).

Let {e(µ), µ = 1, . . . , n} be a set of basis vectors (not necessarily the coordinate basis). The

brackets on the index were added to warn you that these are not the components of a vector, but

a set of n vectors. Any vector V can be expanded as

V = V µe(µ) , (2.22)

where we have dropped the subscript p on Vp. The expansion coefficients V µ are the components

of the vector. In the coordinate basis, e(µ) = ∂µ, the components are

V µ =
dxµ

dλ
, (2.23)

which followed from (2.21). You will often hear people refer to V µ as the “vector,” but you now

see that this isn’t quite correct.
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It will be useful to know how the components of a vector transform under a change of co-

ordinates xµ → xµ
′

(or equivalently a change of charts φ → φ′). Consider the coordinate basis

e(µ) = ∂µ and make a change of coordinates (e.g. from Cartesian to polar). The transformation

of the basis vectors follows directly from the chain rule

xµ → xµ
′

∂µ′ ≡
∂

∂xµ′
=
∂xµ

∂xµ′
∂

∂xµ
=
∂xµ

∂xµ′
∂µ . (2.24)

Since the vector V = V µe(µ) should remain unchanged, we then have

V µ∂µ = V µ′∂µ′

= V µ′ ∂x
µ

∂xµ′
∂µ , (2.25)

and hence

V µ′ =
∂xµ

′

∂xµ
V µ , (2.26)

where we use that the matrix ∂xµ
′
/∂xµ is the inverse of the matrix ∂xµ/∂xµ

′
. In non-geometric

treatments of GR (like Weinberg’s book), the transformation rule (2.26) would be taken as the

defining property of vectors.

Given two vector fields X and Y , we can define the commutator:

[X,Y ](f) ≡ X(Y (f))− Y (X(f)) . (2.27)

Sometimes this is called the Lie bracket. The commutator is itself a new vector field (while the

product XY is not): it is linear and obeys the Leibniz rule

[X,Y ](af + bg) = a[X,Y ](f) + b[X,Y ](g) , (2.28)

[X,Y ](fg) = f [X,Y ](g) + g[X,Y ](f) . (2.29)

It is a useful exercise to verify these properties. Another instructive exercise is to show that the

components of the commutator are

[X,Y ]µ = Xλ∂λY
µ − Y λ∂λX

µ . (2.30)

Note that, since partial derivatives commute, the commutator of the vectors fields given by the

partial derivatives of coordinate functions, {∂µ}, always vanishes.

2.3 Co-Vectors and Tensors

Having defined vectors on a manifold, we can now introduce the associated co-vectors (also

called dual vectors or one-forms or “vectors with a downstairs index”). Given an understanding

of vectors and co-vectors the generalization to tensors will be straightforward.
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2.3.1 Co-Vectors

You have worked with co-vectors before, but you probably gave them different names. For

example:

1. Linear algebra

Consider a two-dimensional vector living in the vector space V:

V =

(
V1

V2

)
. (2.31)

A co-vector is simply the transpose of the vector

V T =
(
V1 V2

)
. (2.32)

It lives in the dual vector space V∗. The inner product of a vector and a co-vector can then

be written as

UTV =
(
U1 U2

)(V1

V2

)
=

2∑
i=1

UiVi ∈ R . (2.33)

We can think of the co-vector UT as mapping the vector V to the number UTV .

2. Special relativity

In special relativity, Vµ = ηµνV
ν are the components of a co-vector. The inner product of

a vector and a co-vector then is

U · V =

3∑
µ=0

UµV
µ ∈ R . (2.34)

Again, the co-vector Uµ maps the vector V µ to a number UµV
µ.

3. Quantum mechanics

A state in quantum mechanics can be written as a vector |ψ〉 (“ket”) living in the Hilbert

space H. The corresponding co-vector is 〈ψ| (“bra”) and the inner product of two states

(“bra-ket”) is

〈φ|ψ〉 ∈ C . (2.35)

For a discrete system, the ket might be represented by a column vector like in (2.31) and

the bra becomes a row vector like in (2.32). The entries of the vectors are general complex

numbers, so we have to take the Hermitian conjugate (not just the transpose) to relate the

two types of vectors.

Let us give a more abstract definition:

A co-vector is a linear map from a vector space V to R:

ω : V 7→ R , so that ω(V ) ∈ R . (2.36)

The co-vectors ω live in the dual vector space, V∗.
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Being a linear map means

ω(aV + bW ) = aω(V ) + bω(W ) , (2.37)

where V,W are vectors and a, b are real numbers. Co-vectors form a vector space, in the sense

that the linear combination of two co-vectors ω and η is another co-vector.

We are interested in the dual of the tangent space Tp(M), which we call T ∗p (M). In that case,

there is a particularly simple way to construct a co-vector.

Let f : M 7→ R be a smooth function. We define the co-vector df by

df(V ) ≡ V (f) , (2.38)

with V ∈ Tp(M).

Now, we pick V = e(ν) = ∂ν (a coordinate basis vector) and f = xµ (a coordinate function).

Equation (2.38) then implies

dxµ(∂ν) = ∂ν(xµ) =
∂xµ

∂xν
= δµν . (2.39)

We identify dxµ as the dual of the coordinate basis ∂µ. The dual of a general basis vector satisfies

e(µ)(e(ν)) = δµν .

Every co-vector can then be written as

ω = ωµe
(µ) . (2.40)

where ωµ (with a downstairs index) are the components of the co-vector. The action of a co-vector

on a basis vector is
ω(e(µ)) = ωνe

(ν)(e(µ))

= ωνδ
ν
µ

= ωµ ,

(2.41)

i.e. the action on a basis vector extracts the corresponding component of the co-vector. The

action of a co-vector on a general vector then is

ω(V ) = ω(V µe(µ))

= ω(e(µ))V
µ

= ωµV
µ .

(2.42)

This is the familiar way of writing the inner product of a vector and a co-vector in components.

The co-vector df takes the form

df =
∂f

∂xµ
dxµ . (2.43)
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To verify this, note that

df(V ) =
∂f

∂xµ
dxµ(V ν∂ν)

= V ν ∂f

∂xµ
dxµ(∂ν)

= V ν ∂f

∂xµ
δµν = V µ∂µf = V (f) ,

(2.44)

which agrees with (2.38). We see that the components of the co-vector df are the gradient of the

function f with respect to the coordinates xµ.

Under a coordinate transformation, xµ → xµ
′
, the basis co-vectors will transform as

dxµ
′

=
∂xµ

′

∂xµ
dxµ , (2.45)

To leave ω = ωµdxµ invariant, the components of the co-vector must then transform as

ωµ′ =
∂xµ

∂xµ′
ωµ . (2.46)

In non-geometric treatments, this transformation rule is taken as the defining property of co-

vectors.

2.3.2 Tensors

Having defined vectors and co-vectors, the generalization to arbitrary tensors is relatively straight-

forward.

A tensor of rank (m,n) is a multi-linear map

T : T ∗p (M)× . . .× T ∗p (M)︸ ︷︷ ︸
(m times)

×Tp(M)× . . .× Tp(M)︸ ︷︷ ︸
(n times)

7→ R . (2.47)

In other words, given m co-vectors and n vectors, a tensor of type (m,n) produces a real

number, T (ω1, . . . , ωm, V1, . . . , Vn).

If e(µ) is a basis for Tp(M), with dual basis e(µ), then the components of T are

Tµ1...µmν1...νn = T (e(µ1), . . . , e(µm), e(ν1), . . . , e(νn)) . (2.48)

Tensors, like vectors and co-vectors, are also basis independent. From this it is simple to infer

how the components transform under a coordinate transformation:

Tµ
′
1...µ

′
m
ν′1...ν

′
n

=
∂xµ

′
1

∂xµ1
· · · ∂x

µ′m

∂xµm
∂xν1

∂xν
′
1
· · · ∂x

νn

∂xν′n
Tµ1...µmν1...νn , (2.49)

This transformation law is easy to remember, since there is only one way to correctly match the

indices on both sides.
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There are a few important operations that we can perform on tensors. First, given two tensors

S and T , of rank (p, q) and (r, s), we can construct a larger tensor of rank (p+ r, q + s) using an

operation known as the tensor product:

S ⊗ T (ω1, . . . , ωp, . . . , ωp+r, V1, . . . , Vq, . . . , Vq+s)

= S(ω1, . . . , ωp, V1, . . . , Vq, . . . , Vq+s)× T (ωp+1, . . . , ωp+r, Vq+1, . . . , Vq+s) .
(2.50)

In terms of components, this simply means

(S ⊗ T )µ1...µpρ1...ρrν1...νqσ1...σs = Sµ1...µpν1...νqT
ρ1...ρr

σ1...σs . (2.51)

Next, given an (r, s) tensor, we can create a lower rank (r − 1, s− 1) tensor by contraction. In

terms of components, contraction is defined as summing over one upper and one lower index. For

example,

Sµρσ = Tµλρσλ , (2.52)

where the Einstein summation convention is used for the repeated index λ. For a (1, 1) tensor,

the contraction defines the trace

T ≡ T λλ . (2.53)

Careful, T now denotes the sum of the diagonal components of the “matrix” Tµν and not the

abstract tensor. This notation usually doesn’t cause confusion. Finally, given an arbitrary tensor

T , we can symmetrize (or anti-symmetrize) some of its indices. For example, given a (0, 2)

tensor T with components Tµν , we can define a symmetric tensor S and an anti-symmetric tensor

A with components

Sµν =
1

2
(Tµν + Tνµ) ≡ T(µν) , (2.54)

Aµν =
1

2
(Tµν − Tνµ) ≡ T[µν] . (2.55)

This generalizes to higher-rank tensors. For example:

T (µν)ρ
σ =

1

2
(Tµνρσ + T νµρσ) . (2.56)

We can also (anti-)symmetrize multiple indices, as long as they are all up or down indices. In

this case, we sum over all possible permutations of the indices in question. For example:

Tµ(νρσ) =
1

3!

(
Tµνρσ + Tµρνσ + Tµρσν + Tµσρν + Tµσνρ + Tµνσρ

)
, (2.57)

where the factor of 3! counts the number of permutations. When we anti-symmetrize multiple

indices, we weight even and odd permutations with opposite signs. For example:

Tµ[νρσ] =
1

3!

(
Tµνρσ − Tµρνσ + Tµρσν − Tµσρν + Tµσνρ − Tµνσρ

)
. (2.58)

Finally, indices can be excluded from the symmetrization procedure using vertical bars. For

example, in Tµ[ν|ρ|σ] we anti-symmetrize ν and σ, but not ρ.

23



2.4 The Metric Tensor

We are ready to introduce one of the most important objects in differential geometry: the metric.

It will allow us to define coordinate-independent distances between points in space(time).

2.4.1 Definition of the Metric

To motivate the definition of the metric, let us recall how we would compute the distance along

a curve γ in R3. Let dx/dλ be the tangent vector of the curve. The distance between two points

γ(0) = p and γ(1) = q then is

d(p, q) ≡
∫ 1

0
dλ

√
dx

dλ
· dx
dλ

. (2.59)

We see that the integral involves the inner product of the tangent vector. To define a distance

on a curved manifold, we therefore need to generalize the inner product between two vectors.

An inner product maps a pair of vectors to a number. At a point p, we write this map as

g : Tp(M)× Tp(M) 7→ R . (2.60)

To make this (0, 2) tensor the metric tensor, we require:

1) It is symmetric: g(V,U) = g(U, V ).

2) It is non-degenerate: If g(U, V )|p = 0, for all Up ∈ Tp(M), then Vp = 0.

In a coordinate basis, we have

g = gµνdxµ ⊗ dxν , (2.61)

which is often abbreviated as ds2 = gµνdxµdxν . Property 1) means that the components of g are

a symmetric matrix: gµν = gνµ. In that case, one can always find a basis that diagonalizes this

matrix. Property 2) implies that none of the eigenvalues vanishes and det(gµν) 6= 0. This allow

us to define the inverse metric, gµν , via

gµνgνσ = δµσ . (2.62)

The number of positive and negative eigenvalues of the metric is independent of the choice of basis

and is called the signature of the metric. If all eigenvalues are positive, we have a Riemannian

metric. In GR, we will be interested in Lorentzian metric with one negative eigenvalue. A

Riemannian (Lorentzian) manifold is a pair (M, g), where M is a differentiable manifold and g

is Riemannian (Lorentzian) metric. Our spacetime is a Lorentzian manifold.

2.4.2 The Metric as a Duality Map

A metric provides a map between vectors and co-vectors. Given a vector with components V µ,

we can define a co-vector with components

Vµ = gµνV
ν . (2.63)
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Similarly, given a co-vector ω, we can use the inverse metric to define a vector

ωµ = gµνων . (2.64)

Of course, any rank (0, 2) tensor will map a vector to a co-vector, but we are prescribing a special

meaning to those mapped by the metric tensor. We assert that V µ and Vµ describe the same

physical object. Physicist: “We use the metric to lower the index from V µ to Vµ.” Mathematician:

“The metric provides a natural isomorphism between a vector space and its dual.”

2.4.3 Distances on a Manifold

The length of a curve can then be defined as in (2.59):

d(p, q) ≡
∫ 1

0
dλ
√
|g(V, V )| , (2.65)

where V is the tangent vector along the curve. The absolute value is required because g(V, V )

doesn’t have to be positive definite. In Euclidean signature, we have g(V, V ) ≥ 0 (and only zero

if V = 0), while in Lorentzian signature, we have

g(V, V ) > 0 =⇒ spacelike

g(V, V ) = 0 =⇒ null

g(V, V ) < 0 =⇒ timelike

(2.66)

A curve in a Lorentzian manifold is called timelike if its tangent vector is everywhere timelike.

Such curves describe the trajectories of massive particles. In that case, it is useful to define the

proper time as dτ2 = −gµνdxµdxν > 0. Integrating this along the curve gives

τ =

∫ 1

0
dλ

√
−gµν

dxµ

dλ

dxν

dλ
. (2.67)

If τ is used to parameterize the curve, then its tangent vector is the four-velocity, with com-

ponents Uµ = dxµ/dτ .

25



3 A First Look at Geodesics

General relativity contains two key ideas: 1) “spacetime curvature tells matter how to move”

(equivalence principle) and 2) “matter tells spacetime how to curve” (Einstein equations). In

this chapter, we will develop the first idea a bit further.

3.1 Action of a Point Particle

The action of a relativistic point particle is

S = −m
∫

dτ , (3.1)

where τ is the proper time along the worldline of the particle and m is its mass. It is not hard

to understand why this is the correct action. The action must be a Lorentz scalar, so that

all observers compute the same value for the action. A natural candidate is the proper time,

because all observers will agree on the amount of time that elapsed on a clock carried by the

moving particle.

As a useful consistency check, we can evaluate the action (3.1) for a particular observer in

Minkowski spacetime. Using

dτ =
√
−ds2 =

√
dt2 − dx2 = dt

√
1−

(
dx

dt

)2

= dt
√

1− v2 =
dt

γ
, (3.2)

the action can be written as an integral over time

S = −m
∫

dt
√

1− v2 , (3.3)

where v2 = δij ẋ
iẋj . For small velocities, v � 1, the integrand is −m + 1

2mv
2. We see that the

Lagrangian is simply the kinetic energy of the particle, plus a constant that doesn’t affect the

equations of motion.

Substituting the line element (1.13) into (3.1), we get

S = −m
∫

dt
√

(1 + 2Φ)− v2

≈
∫

dt

(
−m+

1

2
mv2 −mΦ + · · ·

)
,

(3.4)

where, in the second line, we expanded the square root for small v and Φ. We see that the metric

perturbation Φ indeed plays the role of the gravitational potential in Newtonian gravity. It is

also obvious now why the inertial mass (appearing in the kinetic term 1
2mv

2) is the same as the

gravitational mass (appearing in the potential mΦ).

3.2 Geodesic Equation

Let us now use the action (3.1) to study the motion of particles in a general curved spacetime

with metric gµν(t,x). Consider an arbitrary curve γ connecting two points p = γ(0) and q = γ(1)
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p

q

xµ(λ)

Figure 16. Illustration of a family of curves connecting two points in a spacetime. In order for a path to

be a geodesic, its action must be a minimum, which implies that small variations of the path should not

change the action.

(see Fig. 16). A geodesic is the preferred curve for which the action (3.1) is an extremum. As I

will show in the box below, this curve satisfies the geodesic equation

d2xµ

dτ2
+ Γµαβ

dxα

dτ

dxβ

dτ
= 0 , (3.5)

where Γµαβ is the Christoffel symbol:

Γµαβ ≡
1

2
gµλ
(
∂αgβλ + ∂βgαλ − ∂λgαβ

)
.

We see that the simple action (3.1) has given rise to a relatively complex equation of motion.

Proof. For each such curve, we can compute the action

S[γ] = −m
∫ 1

0
dλ

√
−gµν

dxµ

dλ

dxν

dλ︸ ︷︷ ︸
≡ G

. (3.6)

Finding the path of extremal action is then a problem in the calculus of variations. A curve

is a geodesic if it satisfies the Euler-Lagrange equation

d

dλ

(
∂G

∂ẋµ

)
=

∂G

∂xµ
⇔ d

dt

(
∂L

∂q̇

)
=
∂L

∂q
, (3.7)

where ẋµ ≡ dxµ/dλ. The relevant derivatives are

∂G

∂ẋµ
= − 1

G
gµν ẋ

ν , (3.8)

∂G

∂xµ
= − 1

2G
∂µgνρẋ

ν ẋρ . (3.9)

Before continuing, it is convenient to switch from the general parameterization using λ to

the parameterization using proper time τ . We could not have used τ from the beginning
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since the value of τ at the final point q is different for different curves, so that the range of

integration would not have been fixed. Using(
dτ

dλ

)2

= −gµν ẋµẋν = G2 ⇒ dτ

dλ
= G ⇒ d

dλ
=
dτ

dλ

d

dτ
= G

d

dτ
, (3.10)

the Euler-Lagrange equation (3.7) can be written as

d

dτ

(
gµν

dxν

dτ

)
− 1

2
∂µgαβ

dxα

dτ

dxβ

dτ
= 0 (3.11)

and hence

gµν
d2xν

dτ2
+ ∂αgµν

dxα

dτ

dxν

dτ
− 1

2
∂µgαβ

dxα

dτ

dxβ

dτ
= 0 . (3.12)

Replacing ∂αgµν in the second term by 1
2(∂αgµν + ∂νgµα), we get

gµν
d2xν

dτ2
+

1

2

(
∂αgµβ + ∂βgµα − ∂µgαβ

)dxα
dτ

dxβ

dτ
= 0 , (3.13)

and contracting the whole expression with gσµ gives

d2xσ

dτ2
+

1

2
gσµ
(
∂αgµβ + ∂βgµα − ∂µgαβ

)
︸ ︷︷ ︸

≡ Γσαβ

dxα

dτ

dxβ

dτ
= 0 , (3.14)

and contracting the whole expression with gσµ gives

d2xσ

dτ2
+

1

2
gσµ
(
∂αgµβ + ∂βgµα − ∂µgαβ

)
︸ ︷︷ ︸

≡ Γσαβ

dxα

dτ

dxβ

dτ
= 0 . (3.15)

Relabelling indices, we get

d2xµ

dτ2
+ Γµαβ

dxα

dτ

dxβ

dτ
= 0 , with Γµαβ ≡

1

2
gµλ
(
∂αgβλ + ∂βgαλ − ∂λgαβ

)
, (3.16)

as required.

A simpler Lagrangian

The square-root in the relativistic action (3.6) was a bit of an annoyance. It is therefore worth

pointing out that the geodesic equation can also be obtained more directly as the Euler-Lagrange

equation for the Lagrangian

L ≡ G2 = −gµν ẋµẋν , (3.17)

where ẋµ ≡ dxµ/dλ. An extremum of G must be an extremum of L, since δL = 2GδG. It is

easy to confirm this directly from the Euler-Lagrange equation.
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Starting from the Lagrangian (3.17) is useful because it gives a convenient way to identify

conserved quantities. First, note that L has no explicit dependence on λ, so that ∂L/∂λ = 0.

The total time derivative of the Lagrangian then is

dL
dλ

=
∂L
∂λ

+
dxµ

dλ

∂L
∂xµ

+
dẋµ

dλ

∂L
∂ẋµ

=
dxµ

dλ

d

dλ

(
∂L
∂ẋµ

)
+
dẋµ

dλ

∂L
∂ẋµ

using
∂L
∂xµ

=
d

dλ

(
∂L
∂ẋµ

)
=

d

dλ

(
∂L
∂ẋµ

ẋµ
)
,

(3.18)

which can be rearranged into
d

dλ

(
L − ∂L

∂ẋµ
ẋµ
)

= 0 . (3.19)

This shows that the “Hamilonian”

H ≡ L− ∂L
∂ẋµ

ẋµ = gµν ẋ
µẋν (3.20)

is a constant along the geodesic.For a massive particle, we set λ equal to the proper time τ , and

the constraint becomes gµν ẋ
µẋν = −1. A nice feature of the Lagrangian (3.17) is that is also

applies to massless particles, in which case we must have gµν ẋ
µẋν = 0.

If an additional coordinate xα∗ doesn’t appear in the metric (such a coordinate is called

ignorable), then ∂α∗gµν = 0. This corresponds to a symmetry of the problem. Since the Euler-

Lagrange equation for (3.17) reads

d

dλ

(
gαν

dxν

dλ

)
=

1

2
∂αgµν

dxµ

dλ

dxν

dλ
, (3.21)

this implies the following conserved quantity

gα∗ν
dxν

dλ
= const. (3.22)

We will encounter this in many examples. A coordinate invariant way of capturing the symmetry

will be described in Section 4.3.

3.3 Newtonian Limit

In Newtonian gravity, the equation of motion for a test particle in a gravitational field is

d2xi

dt2
= −∂iΦ . (3.23)

Let us see how to recover this result from the Newtonian limit of the geodesic equation (3.5).

The Newtonian approximation assumes that: 1) particles are moving slowly (relative to the

speed of light), 2) the gravitational field is weak (and can therefore be treated as a perturbation

of Minkowski space), and 3) the field is also static (i.e. has no time dependence). The first

condition means that
dxi

dτ
� dt

dτ
, (3.24)
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so that (3.5) becomes

d2xµ

dτ2
+ Γµ00

(
dt

dτ

)2

= 0 . (3.25)

In the static, weak-field limit, we then write the metric (and its inverse) as

gµν = ηµν + hµν ,

gµν = ηµν − hµν ,
(3.26)

where the perturbation is small, |hµν | � 1, and time independent. To first order in hµν , the

relevant Christoffel symbol is

Γµ00 =
1

2
gµλ(∂0g0λ + ∂0g0λ − ∂λg00)

= −1

2
ηµj∂jh00 .

(3.27)

The µ = 0 component of (3.25) then reads d2t/dτ2 = 0, so that dt/dτ is a constant, while the

µ = i component becomes
d2xi

dτ2
=

1

2

(
dt

dτ

)2

∂ih00 . (3.28)

Dividing both sides by (dt/dτ)2, we get

d2xi

dt2
=

1

2
∂ih00 , (3.29)

which matches (3.23) if

h00 = −2Φ . (3.30)

Note that this identification of the metric perturbation with the gravitational potential is consis-

tent with what we inferred previously from the equivalence principle, cf. (1.13).

3.4 Geodesics on Schwarzschild

In Section 5.5, we will derive the metric around a spherically symmetric star of mass M . The

result is the famous Schwarzschild solution

ds2 = −
(

1− 2GM

r

)
dt2 +

(
1− 2GM

r

)−1

dr2 + r2(dθ2 + sin2 θ dφ2) . (3.31)

Let us look at the geodesics in this spacetime. One important application is to the orbits of

planets in the solar system. We will show how GR leads to an important correction to these

orbits compared to the Keplerian orbits of Newtonian gravity. This effect is largest in the case of

Mercury and was one of the first experimental evidence in favor of GR. (Another key prediction

is the bending of light, which will be covered in the Problem Set.)
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Euler-Lagrange equation

We start with the Lagrangian (3.17), which for the metric (3.31) becomes

L =

(
1− 2GM

r

)
ṫ2 −

(
1− 2GM

r

)−1

ṙ2 − r2θ̇2 − r2 sin2 θφ̇2 , (3.32)

where the overdots denote derivatives with respect to λ, which becomes τ for a massive particle.

Note that the Lagrangian has no dependence on t or φ, so the corresponding Euler-Lagrange

equations imply two conserved quantities:

d

dλ

(
∂L
∂ṫ

)
= 0 ⇒ E ≡ 1

2

∂L
∂ṫ

=

(
1− 2GM

r

)
ṫ , (3.33)

d

dλ

(
∂L
∂φ̇

)
= 0 ⇒ L ≡ −1

2

∂L
∂φ̇

= r2 sin2 θ φ̇ . (3.34)

The two constants E and L are the energy and the angular momentum of a test particle (per

unit mass). Next, we look at the Euler-Lagrange equation for the coordinate θ:

d

dλ

(
∂L
∂θ̇

)
=
∂L
∂θ

d

dλ

(
2r2θ̇

)
= 2r2 sin θ cos θ φ̇2 ⇒ θ̈ =

cos θ

sin3 θ

L2

r4
− 2

ṙ

r
θ̇ .

(3.35)

We see that it is consistent to pick θ = π/2 and θ̇ = 0. In other words, a particle that moves

purely in the equatorial plane will stay in the equatorial plane. Of course, since our system has

rotational symmetry, we can pick θ = π/2 without loss of generality.

Restricting to θ = π/2, the constraint gµν ẋ
µẋν = const becomes

ε ≡ −gµν
dxµ

dλ

dxµ

dλ
=

(
1− 2GM

r

)
ṫ2 −

(
1− 2GM

r

)−1

ṙ2 − r2φ̇2 =

{
+1 timelike

0 null
. (3.36)

Using (3.33) and (3.34), we can write this as

− E2 + ṙ2 +

(
1− 2GM

r

)(
L2

r2
+ ε

)
= 0 . (3.37)

It is instructive to rearrange this as

1

2
ṙ2 + V (r) = E , (3.38)

where E ≡ E2/2 and

V (r) ≡ εc2

2
− εGM

r
+
L2

2r2
− L2GM

c2r3
. (3.39)

For clarity, I have restored factors of the speed of light in the potential. Equation (3.38) is

the equation for a particle of unit mass and energy E moving in a one-dimensional potential

V (r). A similar analysis in Newtonian gravity would have given the same equation, except the

effective potential would not have the last term proportional to 1/r3. (We can roughly think of

the non-relativistic limit as the limit c→∞, which will remove the 1/r3 term in the potential.)

The difference between GR and Newtonian therefore becomes manifest when this term becomes

relevant, which is for small radius.
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Figure 17. Potential for massive particles (with L = 5) in the Schwarzschild geometry (with GM ≡ 1).

Circular orbits

Figures 17 and 18 show the effective potentials for massive and massless particles, respectively.

A particle will move in the potential until is reaches a “turning point” where V (r) = E and hence

ṙ = 0. At extrema of the potential, dV/dr = 0, the particle can move in a circular orbit with

constant radius r = rc. Differentiating the effective potential, we find that circular orbits occur

when

εGMr2
c − L2rc + 3GML2γ = 0 , (3.40)

where γ = 0 in Newtonian gravity and γ = 1 in GR. The orbits are stable if the extremum is a

minimum and unstable if it is a maximum.

In Newtonian gravity (γ = 0), circular orbits are at

rc =
L2

εGM
. (3.41)

We see that for massless particles (ε = 0) there are no circular orbits. This is consistent with the

potential not having an extremum.

In GR (γ = 1), the effective potential looks the same as in Newtonian gravity for large radius r,

but starts to differ for small radius, when the −GML2/r3 term kicks in. For massless particles

(ε = 0), equation (3.40) has a solution at

rc = 3GM (massless particles) . (3.42)

This is known as the photon sphere. It is an unstable orbit. The fate of other light rays depends

on the relative value of their energy E and angular momentum L. Note that the maximum of

the potential at r = rc is

Vmax = V (rc) =
L2

54

1

(GM)2
. (3.43)

The evolution of the photons depends on how their “energy” E = E2/2 compares to Vmax.
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Figure 18. Potential for massless particles in the Schwarzschild geometry (with GM ≡ 1).
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Figure 19. Plot of the radii of stable (rc,+) and unstable (rc,−) circular orbits for massive particles in

the Schwarzschild geometry. The smallest possible stable circular orbit is for rc = 6GM .

• For E < Vmax, the energy is lower than the angular momentum barrier. Light emitted at

r < rc therefore cannot escape to infinity. Instead it will orbit the star before falling back

towards r = 0. On the other hand, light coming from r � rc will bounce off the angular

momentum barrier and return to infinity (see Section 3.6).

• For E > Vmax, the energy is greater than the angular momentum barrier, so that light

emitted from r < rc can escape, while light coming from r � rc can reach r = 0.

For massive particles (ε = 1), equation (3.40) implies that the circular orbits are at

rc,± =
L2 ±

√
L4 − 12(GM)2L2

2GM
(massive particles) . (3.44)

For L >
√

12GM , this corresponds to two solutions, one stable (rc,+) and one unstable (rc,−);

see Fig. 19. In the limit L→∞, the two solutions are

rc,± =
L2 ± L2(1− 6G2M2/L2)

2GM
=

(
L2

GM
, 3GM

)
. (3.45)

33



Mercury’s orbit

Precession

Figure 20. Illustration of the precession of the perihelion of Mercury (not to scale).

For L =
√

12GM , the two solutions merge into is a single stable orbit at

rc = 6GM . (3.46)

This is called the innermost stable circular orbit (ISCO). Finally, for L <
√

12GM , there

is no stable orbit and the particle will spiral in. The Schwarzschild solution therefore has stable

circular orbits for r > 6GM and unstable circular orbits for 3GM < r < 6GM .

3.5 Precession of Mercury

The orbits of the planets in the Solar system are not perfectly circular, but elliptical. Moreover,

as we will now show, in GR, these ellipses are not perfectly closed, leading to a precession of

the perihelia of the orbits3 (see Fig. 20). We expect this effect to be largest for the inner planets

which feel the strongest gravitational pull from the Sun. Indeed, it was known since the 1850s

that the orbit of Mercury was anomalous, but the explanation was only given by GR.

We start with the radial equation (3.38) of a massive particle in the Schwarzschild geometry.

We will describe the radial evolution in terms of the angular coordinate φ. In that case, a perfect

ellipse would correspond to a function r(φ) that is periodic with period 2π. The precession of

the perihelion will be reflected in a change of the period of this function.

Using (
dr

dλ

)2

=

(
dφ

dλ

)2( dr
dφ

)2

=
L2

r4

(
dr

dφ

)2

, (3.47)

3The perihelion of an elliptical orbit is the point of closest approach to the Sun.
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equation (3.38) can be written as(
dr

dφ

)2

+
r4

L2
− 2GM

L2
r3 + r2 − 2GMr =

2E
L2
r4 . (3.48)

It is convenient to introduce the new variable

u ≡ L2

GMr
, (3.49)

with u = 1 corresponding to a Newtonian circular orbit; cf. (3.41). The radial evolution equation

(3.48) then becomes (
du

dφ

)2

+
L2

(GM)2
− 2u+ u2 − 2(GM)2

L2
u3 =

2EL2

(GM)2
. (3.50)

Differentiating this with respect to φ gives

d2u

dφ2
− 1 + u =

3(GM)2

L2
u2 . (3.51)

In Newtonian gravity, we would get the same equation with vanishing right-hand side. To solve

the problem in GR, we expand u into the Newtonian solution u0 and a small deviation u1:

u = u0 + u1 , (3.52)

where

d2u0

dφ2
− 1 + u0 = 0 , (3.53)

d2u1

dφ2
+ u1 =

3(GM)2

L2
u2

0 . (3.54)

The Newtonian solution is

u0 = 1 + e cosφ , (3.55)

where e is the eccentricity of the orbit.4 Substituting this solution into (3.54), we get

d2u1

dφ2
+ u1 =

3(GM)2

L2
(1 + e cosφ)2

=
3(GM)2

L2

[(
1 +

1

2
e2

)
+ 2e cosφ+

1

2
e2 cos 2φ

]
.

(3.56)

A solution to this equation is

u1 =
3(GM)2

L2

[(
1 +

1

2
e2

)
+ eφ sinφ− 1

6
e2 cos 2φ

]
. (3.57)

Only the second term is not periodic and therefore leads to a precession of the orbit. Adding this

term to the Newtonian solution, we get

u = 1 + e cosφ+ α eφ sinφ , α ≡ 3(GM)2

L2
. (3.58)

4An ellipse with semi-major axis a and semi-minor axis b has eccentricity e =
√

1− b2/a2.
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Assuming that α is small, this can be written as

u = 1 + e cos[(1− α)φ] . (3.59)

During each orbit, the perihelion therefore advances by an angle

∆φ = 2πα =
6π(GM)2

L2
. (3.60)

An ordinary ellipse satisfies L2 ≈ GM(1− e2)a and hence

∆φ =
6πGM

c2(1− e2)a
, (3.61)

where we have restored explicit factors of the speed of light. For Mercury, the relevant parameters

are
GM�
c2

= 1.48× 103 m ,

a = 5.79× 1010 m ,

e = 0.2056 .

(3.62)

Substituting this into (3.61), we get

∆φMercury = 5.01× 10−7 radians/orbit = 0.103 ′′/orbit , (3.63)

where ′′ stands for arcseconds. Given that the orbital period of Mercury is 88 days, this can also

be expressed as

∆φMercury = 43.0 ′′/century . (3.64)

The observed precession is 575 ′′/century. Of this, 532 ′′/century are explained by the gravi-

tational perturbations of the other planets and can be computed in Newtonian gravity. The

remainder, 43.0 ′′/century, precisely matches the prediction of GR.5

3.6 Bending of Light

Another historically important prediction of GR was the bending of starlight by the Sun. I will

let you work out the details in a Problem Set and only sketch the main result here.

Figure 21 shows the bending of light in the Schwarzschild geometry. The distance b is the

impact parameter. It characterizes the distances of closest approach in the absence of the bending

of the light. We would like to determine by what angle φ∞ the light is deflected due to the gravity

of the star.

We start again from the evolution equation for the radial coordinate

1

2
ṙ2 +

L2

2r2

(
1− 2GM

r

)
=
E2

2
. (3.65)

5Before GR was discovered, Le Verrier tried to explain the anomalous precession of Mercury by introducing

a new planet called Vulcan. This had been successful before: in 1846, Le Verrier had predicted the existence of

Neptun based on the anomalous motion of Uranus. This time, however, Le Verrier was wrong. The precession

of the perihelion of Mercury was not due to a new planet, but instead was a consequence of the breakdown of

Newtonian gravity.
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Figure 21. Light bending in the Schwarzschild geometry.

Introducing the variable u ≡ 1/r, and performing the same manipulations as in the previous

section, we can write this as (
du

dφ

)2

+ u2 (1− 2GMu) =
E2

L2
. (3.66)

Taking a derivative with respect to φ, we get

d2u

dφ2
+ u = 3GMu2 . (3.67)

As in our analysis of Mercury, we can find a solution to this equation by treating the right-hand

side perturbatively. The solution of the homogeneous equation is

d2u0

dφ2
+ u0 = 0 ⇒ u0 =

1

b
sinφ . (3.68)

Writing the solution as r0 sinφ = b it is clear that is nothing but the horizontal straight line

in Fig. 21. As leading order, the light doesn’t get deflected. To get the next-to-leading order

correction, we use
d2u1

dφ2
+ u1 = 3GMu2

0 . (3.69)

In the Problem Set, you will show that corrected solution u = u0 + u1 is

u =
1

b
sinφ+

GM

2b2
(3 + 4 cosφ+ cos 2φ) . (3.70)

From this, we can extract at what angle φ∞ the light escapes to r =∞ (or equivalently u = 0).

Assuming that the deflection is small, we can use sinφ ≈ φ and cosφ ≈ 1. Equation (3.70) then

leads to

φ∞ ≈ −
4GM

bc2
, (3.71)

where we have put back an explicit factor of c2. Let us estimate the maximal light bending for

the Sun. In that case, we have GM�/c2 ≈ 1.5 km and a light ray just grazing the surface of the

Sun has b ≈ R� = 7× 105 km. This then gives φ∞ ≈ 8.6× 10−5 radians or φ∞ ≈ 18′′. Famously,

this effect was observed in 1919 (by Eddington and others) during a Solar eclipse.
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4 Spacetime Curvature

So far, we have studied how particles move in a curved spacetime, but we have not yet shown

explicitly how this spacetime curvature arises. This is the subject of the next two chapters. In this

chapter, we will develop the necessary mathematical formalism to describe spacetime curvature.

In the next chapter, we will then use this to derive an equation that shows how matter and energy

source the curvature of the spacetime.

4.1 Covariant Derivative

In Euclidean geometry, “parallel lines stay parallel.” How does this generalized to curved space?

What do “stay” and “parallel” mean on a curved manifold? How do we even compare vectors

at different points on the manifold which live in distinct tangent spaces? Before we can answer

these questions, we have to learn how to take the derivative of a vector on a curved manifold.

We will first show that ordinary partial derivatives aren’t good enough. Consider the partial

derivative of a vector, ∂λT
µ. Under a general coordinate transformation xµ → xµ

′
(x), this

transforms as

∂λ′T
µ′(x′) =

∂Tµ
′
(x′)

∂xλ′
=
∂xσ

∂xλ′
∂

∂xσ

(
∂xµ

′

∂xν
T ν(x)

)
(4.1)

=
∂xσ

∂xλ′
∂xµ

′

∂xν
∂σT

ν +

(
∂xσ

∂xλ′
∂2xµ

′

∂xσ∂xν

)
T ν . (4.2)

The first term in (4.2) is what we would expect if the derivative were a tensor, but the second

term spoils the transformation law. The offending term arises from the partial derivative acting

on the transformation matrix ∂xµ
′
/∂xν . We would like to define a new derivative ∇λTµ that

does transform like a tensor:

∇λ′Tµ
′

=
∂xσ

∂xλ′
∂xµ

′

∂xν
∇σT ν . (4.3)

This new derivative is called a “covariant derivative.” In general, the covariant derivative ∇ will

take a rank (p, q) tensor T and produce a new rank (p, q + 1) tensor ∇T . This new tensor will

describe the rate of change of T . In flat space, it should reduce to the ordinary partial derivative ∂.

We will define the covariant derivative axiomatically:

Let V be the tangent vector along a curve γ.

The covariant derivative of tensors along the curve satisfies:

1) Linearity: ∇V (T + S) = ∇V T +∇V S

2) Leibniz: ∇V (T ⊗ S) = (∇V T )⊗ S + T ⊗ (∇V S)

3) Additivity: ∇fV+gWT = f∇V T + g∇WT

4) Action on scalars: ∇V (f) = V (f)
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5) Action on basis vectors: ∇βeα = Γµβαeµ, where ∇β ≡ ∇eβ .

The numbers Γµβα are called connection coefficients (or Christoffel symbols).

Say T = Tµeµ and V = V νeν . The covariant derivative of T is

∇V T = ∇V (Tµeµ)

= ∇V (Tµ)eµ + Tµ(∇V eµ) (using 2)

= V (Tµ)eµ + Tµ∇V νeνeµ (using 4)

= V νeν(Tµ)eµ + TµV ν∇eνeµ (using 3)

= V ν(∂νT
µ)eµ + TµV νΓλνµeλ (using 5)

= V ν(∂νT
µ + ΓµνβT

β)eµ . (4.4)

The components of the resulting (1, 1) tensor are

∇νTµ = ∂νT
µ + ΓµνλT

λ , (4.5)

where we have defined (∇T )ν
µ ≡ ∇νTµ.

Let us see what the transformation law (4.3) implies transformation of the connection coeffi-

cient. We write

∇µ′T ν
′

= ∂µ′T
ν′ + Γν

′
µ′α′T

α′

=
∂xµ

∂xµ′
∂µ

(
∂xν

′

∂xν
T ν

)
+ Γν

′
µ′α′

∂xα
′

∂xα
Tα

=
∂xµ

∂xµ′
∂xν

′

∂xν
∂µT

ν +
∂xµ

∂xµ′
∂2xν

′

∂xµ∂xν
T ν + Γν

′
µ′α′

∂xα
′

∂xα
Tα

=
∂xµ

∂xµ′
∂xν

′

∂xν
(
∂µT

ν + ΓνµαT
α
)
− ∂xµ

∂xµ′
∂xν

′

∂xν
ΓνµαT

α +
∂xµ

∂xµ′
∂2xν

′

∂xµ∂xν
T ν + Γν

′
µ′α′

∂xα
′

∂xα
Tα

=
∂xµ

∂xµ′
∂xν

′

∂xν
∇µT ν −

(
∂xµ

∂xµ′
∂xν

′

∂xν
Γνµα −

∂xµ

∂xµ′
∂2xν

′

∂xµ∂xα
− Γν

′
µ′α′

∂xα
′

∂xα

)
Tα (4.6)

In order for (4.3) to hold, we must therefore have

Γν
′
µ′α′ =

∂xµ

∂xµ′
∂xν

′

∂xν
∂xα

∂xα′
Γνµα −

∂xµ

∂xµ′
∂xα

∂xα′
∂2xν

′

∂xµ∂xα
. (4.7)

We see that Γνµα are not the components of a (1, 2) tensor.

What is the covariant derivative of a co-vector? To determine how the covariant derivative

acts on a covariant vector, ων , let us consider how it acts on the scalar f ≡ ωνT
ν . Using that

∇µf = ∂µf , we can write this as

∇µ(ωνT
ν) = ∂µ(ωνT

ν)

= (∂µων)T ν + ων(∂µT
ν) . (4.8)
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Alternatively, we can write

∇µ(ωνT
ν) = (∇µων)T ν + ων(∇µT ν)

= (∇µων)T ν + ων(∂µT
ν + ΓνµαT

α) , (4.9)

where we have used (4.5) in the second equality. Comparing (4.8) and (4.9), we get

(∇µων)T ν =
(
∂µων − Γαµνωα

)
T ν , (4.10)

where we have relabelled some dummy indices to extract the factor of T ν on the right-hand side.

Since the vector T ν is arbitrary, the factors multiplying it on each side must be equal, so that

∇µων = ∂µων − Γαµνωα . (4.11)

Notice the change of the sign of the second term relative to (4.5) and the placement of the dummy

index.

The covariant derivative of the mixed tensor Tµν can be derived similarly by considering

f ≡ TµνV νWµ. This gives

∇σTµν = ∂σT
µ
ν + ΓµσαT

α
ν − ΓασνT

µ
α . (4.12)

Again, pay careful attention to the signs and the placement of the dummy indices. Staring at

this expression for a little bit should reveal the pattern for arbitrary tensors

Levi-Civita connection

So far, we have not used the metric gµν to define ∇. Now we will.

The Levi-Civita connection is the unique connection that is

1) torsion free: Tαµν ≡ Γαµν − Γανµ = 0

2) metric compatible: ∇ρgµν = 0

To derive the Levi-Civita connection, we expand out the condition for metric compatibility for

three different permutations of the indices:

∇ρgµν = ∂ρgµν − Γλρµgλν − Γλρνgµλ = 0 ,

∇µgνρ = ∂µgνρ − Γλµνgλρ − Γλµρgνλ = 0 ,

∇νgρµ = ∂νgρµ − Γλνρgλµ − Γλνµgρλ = 0 .

(4.13)

Subtracting the second and third expression from the first, and using the symmetry of the torsion-

free connection, we get

∂ρgµν − ∂µgνρ − ∂νgρµ + 2Γλµνgλρ = 0 (4.14)

Multiplying this by gσρ, we find

Γσµν =
1

2
gσρ(∂µgνρ + ∂νgρµ − ∂ρgµν) . (4.15)

This is the same form of the Christoffel symbol that we discovered in Section 3.2 when we derived

the geodesic equation from the point particle action.
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From flat to curved spacetime

We have just seen that the covariant derivative of a tensor transforms like a tensor, while the

partial derivative does not. This means that relativistic equations must be constructed out of

covariant derivatives, not partial derivatives. A simple prescription to upgrade equations from

flat space to curved space is therefore to replace every partial derivative by a covariant derivative,

∂µ → ∇µ.6 For example, the generalization of the inhomogeneous Maxwell equation, ∂νF
µν = Jµ,

is simply

∇νFµν = Jµ , (4.16)

where the dependence on the metric is encoded in the covariant derivative and the associated

Christoffel symbols. This describes the dynamics of electromagnetic fields in general relativity.

Similarly, the conservation of the energy-momentum tensor in special relativity, ∂νT
µν = 0,

becomes

∇νTµν = 0 . (4.17)

Again, the covariant derivative depends on the metric and hence defines a coupling between the

matter and the gravitational degrees of freedom.

4.2 Parallel Transport and Geodesics

Having expanded our mathematical toolkit, we can now return to the problem of the parallel

transport of vectors. In flat spacetime, “parallel transport” simply means translating a vector

along a curve while “keeping it constant.” More concretely, a vector V µ is constant along a curve

xµ(λ) if its components don’t depend on the parameter λ:

dV µ

dλ
=
dxν

dλ
∂νV

µ = 0 (flat spacetime). (4.18)

We generalize this to curved spacetimes by replacing the partial derivative in (4.18) by a covariant

derivative. This gives the so-called directional covariant derivative. A vector is parallel

transported in general relativity if the directional covariant derivative of the vector along a curve

vanishes
DV µ

Dλ
≡ dxν

dλ
∇νV µ = 0 (curved spacetime). (4.19)

Although we have only written the equation for a vector field, an analogous equation applies

for arbitrary tensors. Writing out the covariant derivative, the equation of parallel transport

becomes
dV µ

dλ
+ Γµσν

dxσ

dλ
V ν = 0 , (4.20)

which tells us that the components of the vector will now change along the curve and that this

change is determined by the connection Γµσν .

Using parallel transport, we can give an alternative definition of a geodesic as the curve

along which the tangent vector dxµ/dλ is parallel transported. This generalizes the notion of a

6Since the Christoffel symbols depend only on single derivative of the metric, it is possible to find coordinates—

called “Riemann normal coordinates”—so that they vanish at a given point, Γµαβ(p) = 0. At that point p, covariant

derivatives reduce to partial derivatives and the physics becomes that of special relativity (as required by the

equivalence principle).
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straight line in flat space, which can also be thought of as the path that parallel transports its

own tangent vector. Substituting V µ = dxµ/dλ into (4.20), we get

V ν∇νV µ = 0 ⇒ d2xµ

dλ2
+ Γµσν

dxσ

dλ

dxν

dλ
= 0 , (4.21)

which is indeed the same as the geodesic equation that we found before iff we identify Γµσν with

the Levi-Civita connection.

4.3 Symmetries and Killing Vectors

The importance of symmetries in physics cannot be overstated. General relativity is no exception.

We will see that the Einstein equations are rather complicated nonlinear differential equations

that can only be solved analytically in situations with a fair amount of symmetry.

Identifying all symmetries of a metric is a nontrivial task. So far, we have treated coordinate

transformations as a passive relabelling of the same points on a manifold. Let us now think of

coordinate transformations as active transformations between different points on the manifold.

In other words, the transformation xµ 7→ x̃µ(x) takes a point with coordinates xµ to a different

point with coordinates x̃µ. Nearby points are then connected by infinitesimal transformations:

xµ 7→ x̃µ(x) = xµ + δxµ , (4.22)

where we often write δxµ = −V µ. A symmetry of the metric can then be identified with an

invariance under an active coordinate transformation.

Recall that the metric transforms as

gµν(x) 7→ g̃µν(x̃) =
∂xρ

∂x̃µ
∂xλ

∂x̃ν
gρλ(x) . (4.23)

For the transformation in (4.22), the Jacobian matrix is

∂x̃µ

∂xρ
= δµρ − ∂ρV µ ⇒ ∂xρ

∂x̃µ
= δρµ + ∂µV

ρ , (4.24)

and the transformation of the metric becomes

g̃µν(x̃) = (δρµ + ∂µV
ρ)(δλν + ∂νV

λ)gρλ(x)

= gµν(x) + ∂µV
ρgρν(x) + ∂νV

λgµλ(x) ,
(4.25)

where we have dropped a term quadratic in V µ. Writing

gµν(x) = gµν(x̃+ V ) = gµν(x̃) + V λ∂λgµν(x) , (4.26)

we get

δgµν ≡ g̃µν(x̃)− gµν(x̃) = V λ∂λgµν + ∂µV
ρgρν + ∂νV

λgµλ

= V λ∂λgµν + ∂µ(V ρgρν) + ∂ν(V λgµλ)− V ρ∂µgρν − V λ∂νgµλ

= ∇µVν +∇νVµ + ΓαµνVα + ΓανµVα − V λ(∂µgνλ + ∂νgµλ − ∂λgµν)

= ∇µVν +∇νVµ .

(4.27)
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We have therefore found that

δgµν = ∇µVν +∇νVµ . (4.28)

A transformation is a symmetry is this change of the metric vanishes, δgµν = 0. The infinitesimal

transformation parameters must then obey the Killing equation

∇µVν +∇νVµ = 0 . (4.29)

Roughly, the metric then looks the same at each point along the direction of V µ, which is then

called a Killing vector.

Although it can be hard to find all Killing vectors of a given metric gµν , often it is possible to

write down some Killing vectors by inspection. For example, if the metric doesn’t depend on a

coordinate xα∗, then ∂α∗ is a Killing vector (can you show this?). This is related to the fact that

geodesic equation implies a conserved quantity for each ignorable coordinate (see Section 3.2).

Example Consider three-dimensional Euclidean space R3, with metric

ds2 = dx2 + dy2 + dz2 . (4.30)

Since the metric components are independent of x, y and z, we immediately have the three

Killing vectors X = ∂x, Y = ∂y and Z = ∂z, with components

Xµ = (1, 0, 0) ,

Y µ = (0, 1, 0) ,

Zµ = (0, 0, 1) .

(4.31)

These Killing vectors clearly represent the invariance of the metric under translations along

the x, y and z directions. In addition, we expect to find three Killing vectors corresponding

to rotations around the x, y and z axes. To find them, it is useful to go to polar coordinates:

x = r sin θ cosφ ,

y = r sin θ sinφ ,

z = r cos θ .

(4.32)

where the metric takes the form

ds2 = dr2 + r2dθ2 + r2 sin2 θ dφ2 . (4.33)

Since the metric components are independent of φ, one Killing vector is R = ∂φ, which

describes rotations around the z-axis. In Cartesian coordinates, this Killing vector is

R = −y∂x + x∂y ⇒ Rµ = (−y, x, 0) . (4.34)

By permuting the coordinates, we obtained all roational Killing vectors:

Rµ = (−y, x, 0) ,

Sµ = (z, 0,−x) ,

Tµ = (0,−z, y) .

(4.35)

You should check that the above vectors indeed solve Killing’s equation.
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Emmy Noether has taught us that for every continuous symmetry there is a conserved quantity.

Let us know see what the conserved quantities corresponding to the Killing vectors for the metric

are. Above we have seen that a free massive particle with four-momentum Pµ = mdxµ/dτ

satisfies the following geodesic equation

P ν∇νPµ = 0 . (4.36)

Let Kµ be the Killing vector of the metric gµν . We then claim that Q ≡ KµPµ is a constant

along the geodesic. The proof is straightforward:

D(KνPν)

Dλ
= Pµ∇µ(KνPν) = PµP ν∇µKν + (Pµ∇µP ν)Kν

=
1

2
PµP ν(∇µKν +∇νKµ)

= 0 .

(4.37)

Note that we obtain one conserved quantity Q for each Killing vector Kµ. Some of these conserved

quantities should be very familiar. The Killing vector of time translations is K(0) = ∂t, with

components Kµ = (1, 0, 0, 0), and the corresponding conserved quantity Kµ
(0)Pµ = P0 is the energy

of a particle. Similarly, the Killing vectors of spatial translations are K(i) = ∂i, which imply the

conserved momentum Pi. Finally, the Killing vectors corresponding to spatial rotations, given in

(4.35), lead to conserved angular momentum.

4.4 The Riemann Tensor

An important property of the parallel transport of a vector on a curved manifold is that it depends

on the path along which the vector is transported. This is illustrated in Fig. 22 for the case of

a two-sphere. Consider a vector on the equator, pointing along a line of constant longitude.

We wish to parallel transport this vector to the North Pole. We first do this along the line of

constant longitude. Alternatively, we can first parallel transport the vector along the equator by

an angle θ and then transport it to the North Pole along the new line of constant longitude. As

you see from the figure, the two vectors at the North Pole are not the same, but point in different

directions.

This path dependence of the parallel transport gives another way to diagnose whether the

spacetime is curved. Consider a parallelogram spanned by the infinitesimal vectors Aρ and

Bσ (see Fig. 22) and imagine parallel transporting a vector V µ. From the equation of parallel

transport (4.20), we have that the change of the vector along a side δxρ is

δV µ = −ΓµνρV
νδxρ . (4.38)

On “path 1” we parallel transport the vector first in the direction Aρ and then along Bσ, while

on “path 2” we reverse the order (giving the gray path in Fig. 22). Using (4.38), we get

δV µ
(1) = −Γµνρ(x)V ν(x)Aρ − Γµνρ(x+A)V ν(x+A)Bρ ,

δV µ
(2) = −Γµνρ(x)V ν(x)Bρ − Γµνρ(x+B)V ν(x+B)Aρ ,

(4.39)

44



V µ

Aρ

Bσ

V µ
(1)

V µ
(2)

Figure 22. Path dependence of parallel transport. The example on the left shows the parallel transport of

a vector on a two-sphere. Starting with a vector on the equator, pointing along a line of constant longitude,

the direction of the vector at the North Pole clearly depends on the path along which it was transported.

The diagram on the right defines an infinitesimal parallelogram in spacetime. If the spacetime is curved

then the parallel transport along two different paths will not give the same vector.

and difference is

δV µ ≡ δV µ
(1) − δV

µ
(2)

=
∂(ΓµνρV ν)

∂xσ
BσAρ − ∂(ΓµνρV ν)

∂xσ
AσBρ , (4.40)

where we have Taylor expanded the arguments for small Aρ and Bρ. Swapping the dummy

indices on the second term, ρ↔ σ, and differentiating the products, we find

δV µ = (∂σΓµνρV
ν + Γµνρ∂σV

ν − ∂ρΓµνσV ν − Γµνσ∂ρV
ν)AρBσ . (4.41)

Using (4.20) again, we have ∂σV
ν = −ΓνσλV

λ and hence (4.41) becomes

δV µ = RµνρσV
νAρBσ , (4.42)

where we have defined the Riemann tensor

Rµνρσ ≡ ∂ρΓµνσ − ∂σΓµνρ + ΓµρλΓλνσ − ΓµσλΓλνρ . (4.43)

The Riemann tensor will become our good friend. Note that we have not used the metric to

define the Riemann tensor. So far, the expression (4.43) for an arbitrary connection. For the

Levi-Civita connection, it because a function of the metric.

An alternative way to discover the Riemann tensor is consider the commutator of two covariant
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derivatives [∇µ,∇ν ]. Consider acting with this on a vector field V ρ. This gives

[∇µ,∇ν ]V ρ = ∇µ∇νV ρ −∇ν∇µV ρ

= ∂µ(∇νV ρ)− Γλµν∇λV ρ + Γρµσ∇νV σ − (µ↔ ν)

= ∂µ∂νV
ρ + (∂µΓρνσ)V σ + Γρνσ∂µV

σ − Γλµν∂λV
ρ − ΓλµνΓρλσV

σ

+ Γρµσ∂νV
σ + ΓρµσΓσνλV

λ − (µ↔ ν)

= (∂µΓρνσ − ∂νΓρµσ + ΓρµλΓλνσ − ΓρνλΓλµσ)V σ − 2Γλ[µν]∇λV ρ . (4.44)

In the last step, we have relabeled some dummy indices. We have therefore found that

[∇µ,∇ν ]V ρ = RρσµνV
σ − T λµν∇λV ρ . (4.45)

where T λµν is the torsion tensor. For the Levi-Civita connection, the torsion vanishes and we get

[∇µ,∇ν ]V ρ = RρσµνV
σ (Levi-Civita) . (4.46)

We see that the Riemann tensor determines the degree to which covariant derivatives don’t

commute.

It is also instructive to give index-free definitions of the tensors introduced in this chapter.

The torsion tensor can be thought of as a map from two vector fields to a third vector field:

T (X,Y ) = ∇XY −∇YX − [X,Y ] , (4.47)

where [X,Y ] is the commutator.

Using that ∇X = Xµ∇µ, you should confirm that the components of the torsion tensor are

T λµν = Γλµν − Γλνµ, as in our previous definition of the torsion.

The Riemann tensor is a map from three vector fields to a fourth vector field:

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z . (4.48)

In components, (4.48) implies

RρσµνX
µY νZσ = Xλ∇λ(Y η∇ηZρ)− Y λ∇λ(Xη∇ηZρ)− (Xλ∂λY

η − Y λ∂λX
η)∇ηZρ . (4.49)

By expanding the covariant derivatives, you should show that this leads to our previous definition

of the Riemann tensors in (4.43).
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Symmetries of the Riemann tensor

Only 20 of the 44 = 256 components of Rµνρσ are independent. This is because the Riemann

tensor has a lot of symmetries that relate its different components. These symmetries as easiest

to present for the Riemann tensor with only lower indices Rµνρσ = gµλR
λ
νρσ. We then have

Rµνρσ = −Rνµρσ , (4.50)

Rµνρσ = −Rµνσρ , (4.51)

Rµνρσ = Rρσµν , (4.52)

Rµνρσ +Rµρσν +Rµσνρ = 0 . (4.53)

In words: the Riemann tensor is anti-symmetric in its first two indices [(4.50)] and anti-symmetric

in its last two indices [(4.51)]. Moreover, it is symmetric under the exchange of the first two indices

with the last two indices [(4.52)]. Finally, the sum of the cyclic permutations of the last three

indices vanishes [(4.53)]. Proofs of these identities can be found in Sean Carroll’s book.

In addition to these algebraic symmetries, the Riemann tensor satisfies an important differ-

ential identity called the Bianchi identity. This identity states that the sum of the cyclic

permutations of the first three indices of ∇λRµνρσ vanishes:

∇λRµνρσ +∇νRλµρσ +∇µRνλρσ = 0 . (4.54)

This is the analog of the homogeneous Maxwell equation ∂λFµν + ∂νFλµ + ∂µFνλ = 0.

Ricci tensor and Ricci scalar

Given the symmetries of the Riemann tensor, the unique contraction is the Ricci tensor

Rµν ≡ Rλµλν = ∂λΓλµν − ∂νΓλµλ + ΓλλρΓ
ρ
µν − ΓρµλΓλνρ , (4.55)

where the second equality follows from the definition of the Riemann tensor. Given the Christoffel

symbols, it is usually quicker to compute the Ricci tensor directly, rather than first evaluating

the Riemann tensor.

The trace of the Ricci tensor is the Ricci scalar:

R = Rµµ = gµνRµν . (4.56)

The Ricci scalar is a simple measure of the local curvature of the spacetime.

Example Consider a 2-sphere with metric

ds2 = `2(dθ2 + sin2 θ dφ2) . (4.57)

The nonzero Christoffel symbols are

Γθφφ = − sin θ cos θ ,

Γφθφ = Γφφθ = cot θ .
(4.58)
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From this, we can compute

Rθφθφ = ∂θΓ
θ
φφ − ∂φΓθθφ + ΓθθλΓλφφ − ΓθφλΓλθφ

= (sin2 θ − cos2 θ)− (0) + (0)− (− sin θ cos θ)(cot θ)

= sin2 θ . (4.59)

Lowering an index, we get

Rθφθφ = gθλR
λ
φθφ

= gθθR
θ
φθφ

= `2 sin2 θ . (4.60)

All other components of the Riemann tensor are either zero or related to this one by symme-

tries. The components of the Ricci tensor then are

Rθθ = gφφRφθφθ = 1 ,

Rθφ = Rφθ = 0 ,

Rφφ = gθθRθφθφ = sin2 θ .

(4.61)

The Ricci scalar is

R = gθθRθθ + gφφRφφ =
2

`2
. (4.62)

By dimensional analysis, we should have expected the Ricci scalar to be proportional to 1/`2.

4.5 Geodesic Deviation

In Euclidean space, parallel lines will never meet. Similarly, in Minkowski spacetime, initially

parallel geodesics will stay parallel forever. In a curved space(time), on the other hand, initially

parallel geodesics do not stay parallel. This gives us another way to measure the curvature of

the spacetime.7 In this section, we will study the relative acceleration of two test particles, first

in Newtonian gravity and then in GR.

Consider two particles with positions x(t) and x(t) + b(t). In Newtonian gravity, the two

particles satisfy

d2xi

dt2
= −∂iΦ(xj) , (4.63)

d2(xi + bi)

dt2
= −∂iΦ(xj + bj) . (4.64)

Subtracting (4.63) from (4.64), and expanding the result to first order in the separation vector bj ,

7Note that following the motion of a single test particle is not enough to measure spacetime curvature, since

the particle remains at rest in a freely falling frame. The motion of at least two particles is therefore needed to

detect curvature.
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Uµ

Bµ

Figure 23. Evolution of two geodesics with separation Bµ in a curved spacetime. The relative acceleration

of the geodesics depends on the Riemann tensor and is hence a measure of the spacetime curvature.

we get

d2bi

dt2
= −∂j∂iΦ bj . (4.65)

We see the relative acceleration of the particles is determined by the tidal tensor8 ∂i∂jΦ. The

Poisson equation relates the trace of this tidal tensor to the mass density

∇2Φ = δij∂i∂jΦ = 4πGρ . (4.66)

We will use this connection between the tidal tensor and the Poisson equation as an inspiration

to guess the Einstein equation for the gravitational field.

Let us now find the equivalent of (4.65) in GR where it is called the geodesic deviation

equation. The algebra will be a bit more involved, but the physics is the same as in the

Newtonian treatment. The analog of the tidal tensor will give us a local measure of the spacetime

curvature.

Consider two geodesics separated by an infinitesimal vector Bµ (see Fig. 23). We define the

“relative velocity” of the two geodesics as the directional covariant derivative of Bµ along one of

the geodesics

V µ ≡ DBµ

Dτ
= Uν∇νBµ =

dBµ

dτ
+ ΓµσνU

νBσ , (4.67)

where Uµ = dxµ/dτ . Similarly, the “relative acceleration” is

Aµ ≡ D2Bµ

Dτ2
= Uν∇νV µ =

dV µ

dτ
+ ΓµσνU

νV σ . (4.68)

Using the geodesic equation and the definition of the covariant derivative, we can compute the

relative acceleration. After some work (see the box below), we find

D2Bµ

Dτ2
= −Rµνρσ UνUσBρ , (4.69)

where Rµνρσ is the Riemann tensor. We see that the Riemann tensor is the analog of the tidal

tensor in Newtonian gravity.

8This is called the tidal tensor because of the role it plays in explaining the tides on Earth.
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Proof Substituting (4.67) into (4.68), we get

Aα =
dV α

dτ
+ ΓαβγU

βV γ

=
d

dτ

(
dBα

dτ
+ ΓαβγU

βBγ

)
+ ΓαβγU

β

(
dBγ

dτ
+ ΓγδεU

δBε

)
(4.70)

=
d2Bα

dτ2
+
dΓαβγ
dτ

UβBγ + Γαβγ
dUβ

dτ
Bγ + 2ΓαβγU

β dB
γ

dτ
+ ΓαβγΓγδεU

βU δBε .

The derivatives of the Christoffel symbol and the four-velocity can be written as

dΓαβγ
dτ

= U δ∂δΓ
α
βγ , (4.71)

dUβ

dτ
= −ΓβδεU

δU ε , (4.72)

where (4.72) follows from the geodesic equation. We therefore get

Aα =
d2Bα

dτ2
+ 2ΓαβγU

β dB
γ

dτ
+
(
∂δΓ

α
βγ − ΓεδβΓαεγ + ΓαβεΓ

ε
δγ

)
UβU δBγ , (4.73)

where I have relabelled some dummy indices to extract the common factor UβU δBγ from

three of the terms. To replace the derivatives of Bα, we note that Xα(τ) +Bα(τ) obeys the

geodesic equation

d2(Xα +Bα)

dτ2
+ Γαβγ(Xδ +Bδ)

d(Xβ +Bβ)

dτ

d(Xγ +Bγ)

dτ
= 0 . (4.74)

Subtracting the geodesic equation for Xα(τ) and expanding the result to linear order in Bα,

we get

d2Bα

dτ2
+ 2ΓαβγU

βB
γ

dτ
= −∂δΓαβγBδUβUγ

= −∂γΓαβδU
βU δBγ , (4.75)

where I relabelled some dummy indices in the second line. Substituting this into (4.73), we

find

Aα = −
(
∂γΓαβδ − ∂δΓαβγ + ΓεδβΓαεγ − ΓαβεΓ

ε
δγ

)︸ ︷︷ ︸
≡ Rαβγδ

UβU δBγ , (4.76)

which confirms the result in (4.69).

In the local inertial frame of a freely falling observer, with four-velocity Uµ = (1, 0, 0, 0), the

geodesic deviation equation (4.69) becomes

d2Bµ

dτ2
= −Rµ0ν0B

ν . (4.77)

For the static, weak-field metric (1.13), we have Ri0j0 = ∂i∂jΦ and (4.77) reduces to (4.65).
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5 The Einstein Equation

We will determine the Einstein equation in two different ways. First, we will “guess” it. Then,

we will construct an action for the metric and show that corresponding equation of motion leads

to the same Einstein equation.

5.1 Einstein’s Field Equation

We are searching for the relativistic generalization of the Poisson equation

∇2Φ = 4πGρ . (5.1)

We would like to write this equation in tensorial form, so that it is valid independent of the

choice of coordinates. We know that in relativity the energy density is the temporal component

of the energy-momentum tensor, ρ = T00 (see Section A.4). This suggests that Tµν should

appear on the right-hand side of the Einstein equation. Moreover, we have also seen that the

relativistic generalization of the gravitational potential Φ is the metric gµν (see Section 1.3).

On the left-hand side of the Einstein equation, we therefore expect a symmetric (0, 2) tensor

including second-order derivatives of the metric, ∼ [∇2g]µν . A naive guess would be to act with

the d’Alembertian operator ∇σ∇σ on gµν . This doesn’t work because ∇σgµν = 0. To infer the

correct object, we recall the right-hand side of the Poisson equation is the trace of the tidal tensor,

∂i∂jΦ, and that the relativistic generalization of the tidal tensor is the Riemann tensor, Rµνρσ
(see Section 4.5). This suggests that the trace of the Riemann tensor would be an interesting

object. Taking the trace means contracting the upper index with a lower index. The symmetries

of the Riemann tensor imply that there is a unique way of doing so, which leads to the Ricci

tensor

Rµν ≡ Rλµλν = ∂λΓλµν − ∂νΓλµλ + ΓλλρΓ
ρ
µν − ΓρµλΓλνρ . (5.2)

This has all the properties with want: it is a symmetric (0, 2) tensor with second-order derivatives

acting on the metric.

A first and second guess

Einstein’s first guess for the field equation of GR therefore was

Rµν
?
= κTµν , (5.3)

where κ is a constant. However, this doesn’t work because, in general, we can have ∇µRµν 6= 0,

which would not be consistent with the conservation of the energy-momentum tensor, ∇µTµν = 0.

To see this, we consider the following double contraction of the Bianchi identity (4.54):

0 = gσνgρλ (∇λRµνρσ +∇νRλµρσ +∇µRνλρσ)

= ∇ρRµρ −∇µR+∇νRµν , (5.4)

where R = Rµµ = gµνRµν is the Ricci scalar. This implies that

∇µRµν =
1

2
∇νR , (5.5)
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which doesn’t vanish, except in the trivial case where R (and hence T = gµνTµν) is a constant.

The problem is easy to fix: we simply have to note that (5.5) can be written as

∇µ
(
Rµν −

1

2
gµνR

)
= 0 . (5.6)

This suggests an alternative measure of curvature, the so-called Einstein tensor

Gµν ≡ Rµν −
1

2
gµνR , (5.7)

which is consistent with the conservation of the energy-momentum tensor. Our improved guess

of the Einstein equation therefore is

Gµν
?
= κTµν . (5.8)

To show that this is the correct equation, we still have to show that it reduces to the Poisson

equation (5.1) in the Newtonian limit.

Newtonian limit

To save a few lines of algebra, it is convenient to first write the Einstein equation in a slightly

different form. Contracting both sides of (5.8) gives

R = −κT , (5.9)

where we used that we are living in four spacetime dimensions. Substituting this back, we get

the trace-reversed Einstein equation

Rµν = κ

(
Tµν −

1

2
gµνT

)
. (5.10)

In the Newtonian limit, the energy-momentum tensor take the form of a pressureless fluid, with

T00 = ρ and T = g00T00 ≈ −T00 = −ρ. Note that we have considered ρ to be small (spacetime

reduces to Minkowski in the limit ρ→ 0), so that we can use the unperturbed metric at leading

order. The temporal component of (5.10) then is

R00 =
1

2
κρ . (5.11)

We would like to evaluate R00 in the static, weak-field limit, where the metric can be written as

gµν = ηµν + hµν , where hµν is a small, time-independent perturbation, cf. (3.26). The temporal

component of the Ricci tensor is

R00 = Ri0i0 = ∂iΓ
i
00 − ∂0Γii0 + ΓijλΓλ00 − Γi0λΓλj0

= ∂iΓ
i
00 .

(5.12)

In the first line, we used that R0
000 = 0 and then wrote out the definition of the Riemann

tensor (4.43). In the second line, we dropped the terms of the form Γ2 which are second order in

the metric perturbation, because the Christoffel symbols are first order. We also dropped ∂0Γii0
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because the metric perturbation is assumed to be time independent. The relevant Christoffel

symbol is

Γi00 =
1

2
giλ(∂0g0λ + ∂0g0λ − ∂λg00)

= −1

2
δij∂jh00 ,

where we have again dropped the terms involving time derivatives. At first order in the metric

perturbation, the temporal component of the Ricci tensor then is

R00 = −1

2
∇2h00 , (5.13)

and equation (5.11) becomes

∇2h00 = −κρ . (5.14)

Recall that the Newtonian limit of the geodesic equation implied that h00 = −2Φ, cf. (3.30).

We also discovered the same relation in our discussion of the equivalence principle, cf. (1.13).

Equation (5.14) therefore reproduces the Poisson equation (5.1) if κ = 8πG.

The Einstein equation

The final form of the Einstein equation then is

Gµν = 8πGTµν . (5.15)

In abstract form, this is one of the most beautiful equations ever written down. It describes

a wide range of phenomena, from falling applies and planetary orbits to the expansion of the

universe and black holes.

Note that (5.15) are ten second-order partial differential equations for the metric. In fact,

because the contracted Bianchi identity, ∇µGµν = 0, imposes four constraints, we have only six

independent equations. This counting makes sense since there are four coordinate transformations

and hence the metric has only six independent components. The Einstein equation are nonlinear

functions of the metric which makes solving them a complicated task.

5.2 Einstein-Hilbert Action

An alternative way of deriving the Einstein equation is from an action principle. The action must

be an integral over a scalar function. Moreover, this scalar function should be a measure of the

local spacetime curvature and be at most second order in derivatives of the metric. The unique

such object is the Ricci scalar9 and the corresponding Einstein-Hilbert action is

S =

∫
d4x
√−g R , (5.16)

where g ≡ det gµν is the determinant of the metric. Under a transformation xµ → xµ
′
, we have

d4x→ d4x′ = det

(
∂x′

∂x

)
d4x , (5.17)

9Gravity as an effective field theory also contains higher-order curvature terms such as R2 or RµνR
µν . These

are only important at very short distances.
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where the determinant factor is called the Jacobian of the transformation. Since

det gµν → det gµ′ν′ = det

(
∂xµ

∂xµ′
∂xν

∂xν′
gµν

)
= det

(
∂x

∂x′

)2

det gµν , (5.18)

this Jacobian is cancelled by including the factor of
√−g in the integral. The factor of

√−g was

introduced so that the volume element d4x
√−g is invariant under a coordinate transformation

(see Appendix B for details on the topic of integration on curved manifolds). In Cartesian

coordinates, for example, we have
√−g d4x = dtdx dy dz, while in polar coordinates this becomes

r2 sin θ dt dr dθ dφ.

The Einstein equation then follows by varying the action with respect to the (inverse) metric.

Writing the Ricci scalar as R = gµνRµν , we have

δS =

∫
d4x

(
(δ
√−g)gµνRµν +

√−g δgµνRµν +
√−g gµνδRµν

)
. (5.19)

With some effort, it can be shown that the last term is a total derivative gµνδRµν = ∇µXµ, with

Xµ ≡ gρνδΓµρν−gµνδΓρνρ, and can therefore be dropped without affecting the equation of motion.

To evaluate the first term, we use the fact that any diagonalizable matrix M obeys the identity

ln(detM) = Tr(lnM) . (5.20)

The variation of this identity gives

1

detM
δ(detM) = Tr(M−1δM) . (5.21)

Taking M to be the metric gµν , so that detM = det gµν = g, we get

δg = g(gµνδgµν)

= −g(gµνδg
µν) , (5.22)

where the second equality follows from the the variation of gµνg
µν = δµµ (⇐ gµνδgµν = −gµνδgµν).

Hence, we find

δ
√−g = − 1

2
√−g δg

=
g

2
√−g gµνδg

µν

= −1

2

√−g gµνδgµν . (5.23)

Substituting this into (5.19), we find

δS =

∫
d4x
√−g

(
Rµν −

1

2
gµνR

)
δgµν . (5.24)

For the action to be an extremum, this variation must vanish for arbitrary δgµν . This is only the

case if Gµν = 0, which is the vacuum Einstein equation.
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5.3 Including Matter

To get the non-vacuum Einstein equation, we add an action for matter to the Einstein-Hilbert

action. The complete action then is

S =
1

2κ

∫
d4x
√−gR+ SM , (5.25)

where the constant κ allows for a difference in the relative normalization of the gravitational

action and the matter action. Varying this action with respect to the metric gives

δS =
1

2

∫
d4x
√−g

(
1

κ
Gµν − Tµν

)
δgµν , (5.26)

where we have defined the energy-momentum tensor as

Tµν ≡ −
2√−g

δSM
δgµν

. (5.27)

The action (5.25) therefore has an extremum when the metric satisfies (5.8): Gµν = κTµν . Fixing

the constant κ in the same way as before then gives the Einstein equation (5.15).

In Section 4.3, we considered an infinitesimal coordinate transformation xµ → xµ − V µ and

showed that the metric changes as δgµν = ∇µVν +∇νVµ. Substituting this into (5.24), we get

δS =

∫
d4x
√−g

(
1

κ
Gµν − Tµν

)
∇µV ν

= −
∫

d4x
√−g

(
1

κ
∇µGµν −∇µTµν

)
V ν ,

(5.28)

where, in the second line, we have integrated by parts. The action should be invariant under

any change of coordinates (this is sometimes called the diffeomorphism invariance of GR). In

order for δS to vanish for all V ν , we require that the term in bracket vanished. Since ∇µGµν = 0

(by the Bianchi identity), we therefore get

∇µTµν = 0 , (5.29)

i.e. the energy-momentum tensor must be covariantly conserved. It all hangs together.

In your special relativity education, you should have encountered several forms of energy-

momentum tensors. I will very quickly review some of the most important ones.

• Scalar field The action of a massive scalar field is

S =

∫
d4x
√−g

(
−1

2
gµν∇µφ∇νφ−

1

2
m2φ2

)
. (5.30)

Varying this action with respect to the metric gives the corresponding energy-momentum

tensor

Tµν = ∇µφ∇νφ−
1

2
gµν

(
∇ρφ∇ρφ+m2φ2

)
. (5.31)

The conservation of Tµν follows from the Klein-Gordon equation for the field.
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• Electromagnetic field The Maxwell action is

S = −1

4

∫
d4√−ggµσgντFστFµν . (5.32)

Varying this action with respect to the metric gives

Tµν = gρσFµρFνσ −
1

4
gµνF

ρσFρσ . (5.33)

It is easy to show that Tµν is covariantly conserved when the Maxwell equations are obeyed.

• Perfect fluid The energy-momentum tensor of a perfect fluid, with energy density ρ,

pressure P and 4-velocity Uµ, with UµUµ = −1, is

Tµν = (ρ+ P )UµUν + Pgµν . (5.34)

This energy-momentum tensor plays an important role in cosmology.

5.4 The Cosmological Constant

There is one other term that could be added to the left-hand side of the Einstein equation

which is consistent with the local conservation of Tµν , namely a term of the form Λgµν , for some

constant Λ. Adding this term doesn’t affect the conservation of the energy-momentum tensor,

because the covariant derivative of the metric is zero, ∇µgµν = 0. Einstein, in fact, did add such

a term and called it the cosmological constant. The modified form of the Einstein equation is

Gµν + Λgµν = 8πGTµν . (5.35)

It has also become modern practice to identify this cosmological constant with the stress-energy

of the vacuum (if any) and include it on the right-hand side as a contribution to the energy-

momentum tensor. The action leading to (5.35) is

S =
1

16πG

∫
d4x
√−g(R− 2Λ) + SM . (5.36)

We see that the cosmological constant corresponds to a pure volume term in the action.

5.5 Some Vacuum Solutions

In general, the Einstein equation is hard to solve. A few exact solutions nevertheless exist in

situations with a large amount of symmetry. We will first consider the vacuum Einstein equation

with a cosmological constant. Contracting both sides of (5.35) with the metric, we get R = 4Λ

and hence

Rµν = Λgµν . (5.37)

Let me mention a few famous solutions to this equation.
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Minkowski space

First, we set Λ = 0. Reassuringly, the Minkowski spacetime,

ds2 = −dt2 + dx2 , (5.38)

satisfies the vacuum Einstein equation Rµν = 0. In Cartesian coordinates, the Christoffel symbols

vanish identically and so do therefore the Ricci tensor. In polar coordinates, the Christoffel

symbols do not all vanish. However, a tensor that vanishes in one frame must vanish in all

frames, so that Ricci tensor will still be zero.

Schwarzschild solution

In Chapter 3, we studied geodesics in the Schwarzschild geometry around a spherically symmetric

object of mass M . We pulled the Schwarzschild metric out of the hat. We will now derive it as

a solution to the vacuum Einstein equation, Rµν = 0. We will further discuss the properties of

the Schwarzschild solution in Section 6.

We assume that beside being spherically symmetric, the spacetime is “static.” In fact, in the

Problem Set you will prove Birkhoff’s theorem which states that any spherically symmetric

solution of the vacuum field equations must be static.

To preserve spherical symmetry, it is most convenient to work in polar coordinates xµ =

(t, r, θ, φ). The most general ansatz for a static, spherically symmetric line element then is

ds2 = −e2α(r)dt2 + e2β(r)dr2 + e2γ(r)r2dΩ2 . (5.39)

We have written the metric coefficients in terms of exponents to preserve the signature of the

metric. For a static spacetime, these coefficients are independent of time, and because of spherical

symmetry they depend only on the radial coordinate r. Mixed terms like dtdxi are also forbidden

for a static spacetime, since they aren’t invariant under the inversion t→ −t.
To simplify the angular part of the metric, it is useful to redefine the radial coordinate as

r̄ ≡ eγ(r)r . (5.40)

The associated basis one-form is

dr̄ =

(
1 + r

dγ

dr

)
eγdr , (5.41)

and the metric (5.39) becomes

ds2 = −e2α(r)dt2 +

(
1 + r

dγ

dr

)−2

e2β(r)−2γ(r)dr̄2 + r̄2dΩ2 , (5.42)

where r should be read as a function of r̄. Since the coefficient functions were arbitrary to begin

with, nothing stops us from performing the following relabelings:

r̄ → r ,(
1 + r

dγ

dr

)−2

e2β(r)−2γ(r) → e2β .
(5.43)
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The metric (5.42) then reads

ds2 = −e2α(r)dt2 + e2β(r)dr2 + r2dΩ2 . (5.44)

This metric will be our starting point for trying to solve the vacuum Einstein equation, Rµν = 0.

Plugging (5.44) into the definition for the Christoffel symbols, we get the following non-zero

components
Γttr = ∂rα Γrtt = e2(α−β)∂rα Γrrr = ∂rβ

Γθrθ =
1

r
Γrθθ = −re−2β Γφrφ =

1

r

Γrφφ = −re−2β sin2 θ Γθφφ = − sin θ cos θ Γφθφ =
cos θ

sin θ
.

(5.45)

Substituting these into the definition of the Riemann tensor, we then find

Rtrtr = ∂rα∂rβ − ∂2
rα− (∂rα)2

Rtθtθ = −re−2β∂rα

Rtφtφ = −re−2β sin2 θ∂rα

Rrθrθ = re−2β∂rβ

Rrφrφ = re−2β sin2 θ∂rβ

Rθφθφ = (1− e−2β) sin2 θ .

(5.46)

Contracting this with the inverse metric, we get the Ricci tensor

Rtt = e2(α−β)

[
∂2
rα+ (∂rα)2 − ∂rα∂rβ +

2

r
∂rα

]
Rrr = −∂2

rα− (∂rα)2 + ∂rα∂rβ +
2

r
∂rβ

Rθθ = e−2β
[
r(∂rβ − ∂rα)− 1

]
+ 1

Rφφ = sin2 θRθθ .

(5.47)

To satisfy the vacuum Einstein equation, these components of the Ricci tensor must vanish. Since

Rtt and Rrr vanish independently, we can write

0 = e2(β−α)Rtt +Rrr =
2

r
(∂rα+ ∂rβ) , (5.48)

so that α = −β + c, where c is an arbitrary constant. This constant can be absorbed by a

rescaling of the time coordinate, t→ e−ct, after which we have

α = −β . (5.49)

We have reduced the number of free functions from two to one. Next, we consider Rθθ = 0, which

now becomes

e2α(2r∂rα+ 1) = 1 ⇒ ∂r(re
2α) = 1 . (5.50)
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Integrating the last expression, we find

e2α = 1− RS
r

, (5.51)

where RS is an arbitrary integration constant. It is straightforward to check that the function

in (5.51) also solved Rtt = 0 and Rrr = 0. Rather remarkably, we have therefore found an exact

solution to the Einstein equation.

What is the physical meaning of the constant RS? Recall from (1.13) that in the temporal

component of the metric can be written as

gtt = −(1 + 2Φ) , (5.52)

where Φ is the Newtonian potential. For a point mass, we have

Φ = −GM
r

, (5.53)

and hence we identify the Schwarzschild radius as RS ≡ 2GM . The final form of the

Schwarzschild metric then is

ds2 = −
(

1− 2GM

r

)
dt2 +

(
1− 2GM

r

)−1

dr2 + r2dΩ2 . (5.54)

At large distances, r � RS , the metric reduces to the Minkowski metric and the spacetime is

asymptotically flat.

De Sitter space

Next, we consider the case of a positive cosmological constant, Λ > 0. Motivated by our discussion

of the Schwarzschild solution, we try the ansatz

ds2 = −e2α(r)dt2 + e−2α(r)dr2 + r2dΩ2 . (5.55)

The corresponding components of the Ricci tensor were given in (5.56):

Rtt = e4α

[
∂2
rα+ 2(∂rα)2 +

2

r
∂rα

]
= −e4αRrr ,

Rφφ = sin2 θ

[
1− e2α

(
1 + 2r∂rα

)]
= sin2 θRθθ .

(5.56)

This satisfies Rµν = Λgµν if

∂2
rα+ 2(∂rα)2 +

2

r
∂rα = −e−2α(r)Λ ,

1− e2α
(

1 + 2r∂rα
)

= r2Λ .
(5.57)

It is easily confirmed that the solution which satisfies both of these conditions is

e2α = 1− r2

R2
, (5.58)
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where R2 ≡ 3/Λ. The corresponding metric is

ds2 = −
(

1− r2

R2

)
dt2 +

(
1− r2

R2

)−1

dr2 + r2dΩ2
2 . (5.59)

This solution is called de Sitter space in static patch coordinates. The static patch coordinates

cover only part of the de Sitter geometry, namely that accessible to a single observer which is

bounded by the cosmological horizon at r = R. Alternative coordinates that cover the whole

space are the so-called global coordinates

ds2 = −dT 2 +R2 cosh2(T/R) dΩ2
3 , (5.60)

where dΩ2
3 ≡ dψ2 + sin2 ψ dΩ2

2 is the metric on the unit three-sphere. In these coordinates, we

think of de Sitter space as an evolving three-sphere that start infinitely large at T → −∞, shrinks

to a minimal size at T = 0 and then expands to infinite size at T → +∞. In applications to

inflation, we often use the planar coordinates

ds2 = −dt̂2 + e2t̂/R(dr2 + r2dΩ2
2) . (5.61)

which cover half of the global geometry. This describes an exponentially expanding universe with

flat spatial slices (although this time dependence only becomes physical when the time translation

invariance of de Sitter space is broken by additional matter fields like the inflaton).

Anti-de Sitter space

Finally, we take the cosmological constant to be negative, Λ < 0. The corresponding solution is

anti-de Sitter space

ds2 = −
(

1 +
r2

R2

)
dt2 +

(
1 +

r2

R2

)−1

dr2 + r2dΩ2 , (5.62)

where R2 ≡ −3/Λ. This spacetime plays an important role in toy models of quantum gravity.
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6 Black Holes

One of the most remarkable predictions of GR is the existence of black holes. These are regions

of spacetime from which nothing, not even light, can escape. Figure 24 shows the stunning image

of the black hole at the center of the galaxy M87. The picture was taken by the Event Horizon

Telescope (EHT), a global network of eight radio telescopes. The image shows light from the hot

gas swirling around the black hole. The light is highly bent by the strong gravity near the black

hole’s event horizon. The dark central region is the black hole’s shadow.

Figure 24. Image of the shadow of the black hole at the center of M87.

In this chapter, we will discuss the fascinating physics of black holes. I will follow closely the

excellent lecture notes by David Tong, which I recommend for further details.

6.1 Schwarzschild Black Holes

In Section 5.5, we derived the metric around a spherically symmetric object of mass M :

ds2 = −
(

1− 2GM

r

)
dt2 +

(
1− 2GM

r

)−1

dr2 + r2(dθ2 + sin2 θ dφ2) . (6.1)

This spacetime has some striking properties that we will now discuss.

Singularities

Looking at (6.1), we note the special points r = 0 and r = 2GM where the metric coefficients gtt

and grr blow up. How worried should we be about this?

We should first note that the metric coefficients are coordinate dependent, so they are not an

unambiguous way to diagnose a pathology of the spacetime. As a trivial example, consider the

metric of R2:

ds2 = dx2 + dy2 = dr2 + r2dθ2 . (6.2)

While there is no problem in the Cartesian coordinates (x, y), in polar coordinates (r, θ) we have

gθθ = r−2 which blows up for r → 0. There is nothing wrong with the point r = 0 and the

singularity just reflects a limitation of polar coordinates.
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We need a more coordinate-independent way to study the Schwarzschild geometry at r = 0

and r = 2GM . The most straightforward way to do this is to look at scalar quantities that don’t

depend on the choice of coordinates. If these also blow up, we are really in trouble.

The simplest scalar we could consider is the Ricci scalar R = gµνRµν . However, because the

Schwarzschild metric is a solution of the vacuum Einstein equation, Rµν = 0, this necessarily

vanishes, R = 0. The same holds for RµνR
µν . The simplest nontrivial curvature invariant is

therefore the square of the Riemann tensor, also called the Kretschmann scalar, RµνρσRµνρσ.

For the Schwarzschild solution, this evaluates to

RµνρσRµνρσ =
48G2M2

r6
. (6.3)

We see that there is no singularity in the spacetime curvature at the Schwarzschild radius, r =

2GM , but there is one at r = 0. Nevertheless, as we will see below, r = 2GM is still an interesting

place in the spacetime.

Event horizon

As we will see below, the Schwarzschild radius r = 2GM is a point of no return. An object

compressed to a size smaller than its Schwarzschild radius will form a black hole. The surface at

r = 2GM is called the event horizon. Anything that enters the event horizon is trapped and

can never re-emerge.

Let’s put in some numbers. Consider an object of the mass of the Earth, M⊕ = 6 × 1024 kg.

The corresponding Schwarzschild radius is RS,⊕ = 2GM⊕/c2 = 8.9 mm. A black hole of the mass

of the Earth can therefore be drawn to scale:

Of course, this is much smaller than the actually size of the Earth, R⊕ ≈ 6400 km, which is why

the Earth is not a black hole. Similarly, taking the mass of the Sun, M� = 2 × 1030 kg gives

RS,� ≈ 3 km compared to R⊗ ≈ 7× 105 km for the radius of the Sun.

For ordinary planets or stars, we have RS � R, so that the would-be event horizon is not

part of the spacetime. In order for a black hole to form, the mass must be compressed into

an incredibly small region of space. This can happen when a star with a mass above the Tol-

man–Oppenheimer–Volkoff limit, M > 4M�, runs out of fuel and collapses. (Stars with smaller

masses will become white dwarfs or neutron stars.) We also believe that there are supermassive

black holes, with masses up to M ∼ 1010M�, at the centers of most galaxies.

Near horizon limit: Rindler space

In the rest of this chapter, we will study the black hole geometry in more detail. We will start by

looking at the geometry near the horizon. To zoom in on this part of the spacetime, we define

r = 2GM + η , (6.4)

62



with 0 < η � 2GM . (Taking η > 0 means that we are describing the spacetime just outside the

Schwarzschild radius.) In this limit, we have

1− 2GM

r
= 1− 2GM

2GM + η
= 1−

(
1 +

η

2GM

)−1
≈ η

2GM
+O(η2) ,

r2 = (2GM + η)2 ≈ (2GM)2 +O(η) ,

(6.5)

so that the Schwarzschild metric becomes

ds2 = − η

2GM
dt2 +

2GM

η
dη2︸ ︷︷ ︸

Rindler space

+ (2GM)2dΩ2︸ ︷︷ ︸
S2

. (6.6)

We see that the metric has separated into a two-sphere of fixed radius 2GM and a 1+1 dimensional

Lorentzian geometry called Rindler space. Defining the change of variable

ρ2 ≡ 8GMη , (6.7)

the metric of the Rindler space becomes

ds2 = −
( ρ

4GM

)2
dt2 + dρ2 . (6.8)

In this geometry, an observer at constant ρ has a finite acceleration aµ = uν∇νuµ, where uµ =

dxµ/dτ is the four-velocity. (See Midterm Exam.) This makes sense: an observer sitting at

constant ρ (and hence constant r) must accelerate to avoid falling to the black hole!

Using the transformation

T ≡ ρ sinh

(
t

4GM

)
,

X ≡ ρ cosh

(
t

4GM

)
,

(6.9)

the Rindler metric becomes

ds2 = −dT 2 + dX2 . (6.10)

Note that the range of these variables is X ∈ (0,∞) and −X < T < X. We see that Rindler

space is just a patch of Minkowski space in disguise (see Fig. 25).

Observers at constant ρ (which, as we saw, are accelerated) have coordinates such that X2 −
T 2 = ρ2 = const, which are hyperbolas in the (T,X) plane. Lines of constant t are such that

T/X = tanh(t/4GM) = const, i.e. straight lines with slope tanh(t/4GM). These lines are shown

in Fig. 25. For any finite t, the horizon at ρ = 0 is mapped to the origin T = X = 0. For t = ±∞,

the horizon corresponds to the two lines X = ±T . (To see this, we scale t → ±∞ and ρ → 0,

while keeping ρe±t/4GM fixed.) We see that the event horizon of a black hole is not a timelike

surface, like for a star, but a null surface.

The original coordinates t ∈ (−∞,∞) and x ∈ (0,∞) only cover the region with X > 0 and

−X < T < X. The other regions are not covered by the original coordinates, however, they

are perfectly fine regions of flat spacetime and we can “extend” the range of the coordinates to
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← t = const

← ρ = const

Figure 25. Illustration of the coordinates on Rindler space, the near horizon geometry of a Schwarzschild

black hole.

T,X ∈ R. We see that there is nothing special going on at the horizon X = ±|T |. If we zoom

in on the horizon, we find it to be no different from any other point in the spacetime. Having

said that, we will see below that the horizon has rather special properties, but those only become

apparent from a more global perspective.

In the following, we will go through a very similar process to “extend” the region of spacetime

covered by the original coordinates. The apparent singularity at ρ → 0 is very similar to the

apparent singularity at r → 2GM , the Schwarzschild radius.

Eddington–Finkelstein coordinates

Our task is to find new coordinates that are better behaved at r = 2GM than our original

Schwarzschild coordinates. To motivate the choice of new coordinates, we first consider radial

null geodesics in the Schwarzschild spacetime.

Since dθ = dφ = 0 for a radial trajectory, and ds2 = 0 for a null geodesic, we have

−
(

1− 2GM

r

)
dt2 +

(
1− 2GM

r

)−1

dr2 = 0 , (6.11)

and hence
dt

dr
= ±

(
1− 2GM

r

)−1

. (6.12)
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r

t

2GM

Figure 26. In the Schwarzschild coordinates, the light cones “close up” as they approach r = 2GM . To

an outside observer nothing crosses the event horizon.

The + sign describes outgoing photons (dr > 0 for dt > 0), while the − sign is for incoming

photons. Equation (6.12) gives the slope of the photon trajectories in the t–r coordinates. For

large r, we get dt/dr = ±1 which are the usual 45◦ light cones of Minkowski space. As we

approach the Schwarzschild radius, however, we see that dt/dr becomes larger and the light

cones “close up” (see Fig. 26). In fact, for r → 2GM , we have dt/dr →∞ and there is no radial

evolution for any finite dt. A light ray that approaches the Schwarzschild radius never seems to

get there. As we will see, this is an illusion of the Schwarzschild coordinates.

The closing up of the light cones can be avoided by introducing a new radial coordinate r∗

defined as

dr∗2 =

(
1− 2GM

r

)−2

dr2 , (6.13)

r∗ = r + 2GM ln
( r

2GM
− 1
)
. (6.14)

In terms of the coordinate r∗—called the tortoise coordinate (or Regge-Wheeler coordinate)—

the light cones would have a fixed slope:

dt

dr
= ±

(
1− 2GM

r

)−1

⇒ dt

dr∗
= ±1 ⇒ t = ± r∗ + const . (6.15)

This suggests that it might be useful to write the Schwarzschild geometry in t–r∗ coordinates. In

these coordinates, the metric takes the following form:

ds2 =

(
1− 2GM

r

)
(−dt2 + dr∗2) + r2dΩ2 , (6.16)

where r should be thought of as a function of r∗. The light cones now don’t close up anymore

and none of the metric coefficients blow up at r = 2GM (although both gtt and gr∗r∗ still vanish

there); see Fig. 27. However, the coordinates are not perfect yet, since the surface of interest,

r = 2GM , has been pushed to r∗ = −∞.
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r∗

t

r = 2GM
r∗ = −∞

Figure 27. In the tortoise coordinates (6.14), the light cones remain “open”, but r = 2GM has been

pushed to infinity.

Our next step is to define coordinates that are naturally adapted to the null geodesics. These

null coordinates are
v = t+ r∗ ,

u = t− r∗ .
(6.17)

An attractive feature of these coordinate is that ingoing radial null geodesics correspond to

v = const, while the outgoing ones satisfy u = const. Another name for the coordinates in (6.17)

are the Eddington–Finkelstein coordinates.

We then replace t by t = v − r∗. Since

dt = dv − dr∗ = dv −
(

1− 2GM

r

)−1

dr , (6.18)

the metric (6.16) becomes

ds2 = −
(

1− 2GM

r

)
dv2 + 2dvdr + r2dΩ2 . (6.19)

This is the Schwarzschild metric in ingoing Eddington–Finkelstein coordinates. Note that the dr2

term has disappeared and there is no real singularity at r = 2GM anymore. However, the metric

coefficient gvv vanishes at r = 2GM and flips sign for r < 2GM . Is that healthy? One thing to

notice is that although gvv vanishes at r = 2GM , there is no real degeneracy. To see this, we

compute the determinant of the metric

g = det gµν =


−(1− 2GM/r) 1 0 0

1 0 0 0

0 0 r2 0

0 0 0 r2 sin2 θ

 = −r4 sin2 θ . (6.20)

We see that the determinant is perfectly regular at r = 2GM . The new cross term dvdr has

stopped the metric from becoming degenerate at the horizon. Hence, the metric is invertible and
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r
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r = 2GMr = 0

Figure 28. In the ingoing Eddington-Finkelstein coordinates, the light cones don’t close up at r = 2GM ,

but they “tilt over”.

r = 2GM is simply a coordinate singularity of the original coordinates. Just like in the case of

Rindler space, we can therefore use the ingoing Eddington-Finkelstein coordinates to continue

the radial coordinate r inside the horizon, all the way to the singularity at r = 0.

In the Eddington-Finkelstein coordinates, the ingoing radial null geodesics satisfy

v = t+ r∗ = const (ingoing) , (6.21)

while the outgoing ones have u = t− r∗ = const, or v = 2r∗+ const. For r > 2GM , the definition

(6.14) of the tortoise coordinate r∗ implies

v = 2r + 4GM ln
( r

2GM
− 1
)

+ const (outgoing, r > 2GM) . (6.22)

Clear, the log term becomes ill-defined for r < 2GM . An alternative definition of the tortoise

coordinate that obeys (6.13) on both sides of the horizon is

r∗ = r + 2GM ln
∣∣∣ r

2GM
− 1
∣∣∣ . (6.23)

This tortoise coordinate is multi-valued, with r∗ ∈ (−∞,∞) outside the horizon and r∗ ∈ (−∞, 0)

inside the horizon. The black hole singularity r = 0 is at r∗ = 0. The outgoing geodesics then

obey

v = 2r + 4GM ln
∣∣∣ r

2GM
− 1
∣∣∣+ const (outgoing) , (6.24)

and the slope of the ingoing and outgoing null geodesics is

dv

dr
=


0 (ingoing)

2

(
1− 2GM

r

)−1

(outgoing)
(6.25)

Notice that the expression in (6.25) for dv/dr, without absolute values, applies both inside and

outside the horizon. This shows that the light cones now don’t close up at r = 2GM , but they

“tilt over” (see Fig. 28): dv/dr changes sign at r = 2GM . Inside the horizon, even the “outgoing”

null geodesics are directed towards the singularity at r = 0. This is what makes the Schwarzschild

radius an event horizon. All future-directed timelike geodesics are trapped inside r = 2GM .
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r

t∗ = v − r

2GM

← outgoing

← ingoing

Figure 29. Finkelstein diagram in ingoing coordinates. Ingoing null rays are shown in red, outgoing in

blue. Inside the horizon, outgoing geodesics do not go out!

Finkelstein diagram

We would like to draw a diagram—called the Finkelstein diagram—where the ingoing null

rays are at 45 degrees. A simple way to do this would be to use the (t, r∗) coordinates. However,

as we have just seen, r∗ isn’t single-valued, so we prefer to use the original radial coordinate r.

We therefore define a new time coordinate t∗ such that

v = t+ r∗ = t∗ + r . (6.26)

Ingoing null rays then travel at 45 degrees in the (t∗, r) coordinates, where t∗ = v − r. Using

(6.24) for the outgoing null rays, we have

t∗ =

−r + const (ingoing)

r + 4GM ln
∣∣∣1− r

2GM

∣∣∣+ const (outgoing)
(6.27)

These curves are shown as the red and blue lines in Fig. 29. Crucially, the “outgoing” geodesics

inside the black hole do not go out! This is why the region r < 2GM is a black hole.

White hole

An alternative extension of the Schwarzschild geometry replaces the time coordinate t with the

other null coordinate

u = t− r∗ . (6.28)
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r

t∗ = u + r

2GM

← outgoing

← ingoing

Figure 30. Finkelstein diagram in outgoing coordinates. Ingoing null rays are shown in red, outgoing in

blue. Inside the horizon, ingoing geodesics do not go in! Note that this figure is the time reverse of Fig. 29.

Since

dt = du+ dr∗ = du+

(
1− 2GM

r

)−1

dr , (6.29)

the metric (6.16) becomes

ds2 = −
(

1− 2GM

r

)
du2 − 2dudr + r2dΩ2 . (6.30)

This is the Schwarzschild metric in outgoing Eddington–Finkelstein coordinates. The only differ-

ence with the metric in the ingoing coordinates (6.19) is the sign of the cross term dudr. This

small difference has a big effect.

The Finkelstein diagram in the outgoing coordinates is shown in Fig. 30. This time the space-

time diagram is drawn for r and t∗ = u + r, so that the outgoing geodesics are at 45 degrees.

Now, the outgoing geodesics always go out, even when they start behind the horizon. Of course,

this is the opposite of a black hole; it is called a white hole and you should think of it as the time

reverse of a black hole. Since the Einstein equations are time reversal invariant it isn’t surprising

that we find the time reversal of a black hole. Having said that, white holes are not physically

relevant since, in contrast to black holes, they cannot be formed from collapsing matter.

Kruskal coordinates

We have just seen that we can extend the r ∈ (2GM,∞) coordinates of the Schwarzschild solution

in two different ways, leading to black holes and white holes. To understand this, we go back to
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Figure 31. Illustration of the parts of Rindler space covered by ingoing coordinate (left) and outgoing

coordinates (right).

the near horizon limit and the Rindler geometry. The region outside the black hole is the right-

hand quadrant of Rindler space; see Fig. 25. The ingoing Eddington-Finkelstein coordinates

extend this to the upper quadrant, while the outgoing Eddington-Finkelstein coordinates extend

it to the lower quadrant; see Fig. 31. To make this more explicit, we will introduce another set

of coordinate which cover the entire spacetime, including both black holes and while holes.

The idea is to write the Schwarzschild metric using both null coordinates v = t + r∗ and

u = t− r∗. This gives

ds2 =

(
1− 2GM

r

)
(−dt2 + dr∗2) + r2dΩ2

= −
(

1− 2GM

r

)
dudv + r2dΩ2 ,

(6.31)

where r2 should be viewed as a function of u − v. In these coordinates, the metric is still

degenerate at r = 2GM , so this isn’t ideal yet. An improved set of coordinates are the Kruskal

coordinates (or Kruskal–Szekeres coordinates) defined by

U = −e−u/4GM ,

V = ev/4GM .
(6.32)

The exterior of the black hole corresponds to U < 0 and V > 0. Outside the horizon, we have

UV = −er∗/2GM =
( r

2GM
− 1
)
er/2GM , (6.33)

U

V
= −e−t/2GM . (6.34)
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The metric (6.31) then becomes

ds2 = −
(

1− 2GM

r

)
dudv + r2dΩ2

= −
(

1− 2GM

r

)
(4GM)2

−UV dUdV + r2dΩ2

= −
(

1− 2GM

r

)
(4GM)2

( r

2GM
− 1
)−1

e−r/2GMdUdV + r2dΩ2

= −32(GM)3

r
e−r/2GMdUdV + r2dΩ2 .

The original Schwarzschild coordinate cover only the region of the spacetime with U < 0 and

V > 0, but nothing stops us now from extending this to U, V ∈ R. The metric is manifestly

smooth and non-degenerate at r = 2GM .

The coordinates U and V are both null coordinates, in the sense that their partial derivatives

∂U and ∂V are both null vectors. There is nothing wrong with this, but it also easy to convert

this into a system when one coordinate is timelike and the rest are spacelike. To achieve this, we

simply define

T =
1

2
(V + U) =

( r

2GM
− 1
)1/2

er/4GM sinh

(
t

4GM

)
,

X =
1

2
(V − U) =

( r

2GM
− 1
)1/2

er/4GM cosh

(
t

4GM

)
,

(6.35)

in terms of which the metric becomes

ds2 =
32(GM)3

r
e−r/2GM (−dT 2 + dX2) + r2dΩ2 , (6.36)

where r is defined implicitly through

T 2 −X2 =
(

1− r

2GM

)
er/2GM . (6.37)

Like in the (t, r∗) coordinates, the radial null geodesics look like in flat space:

T = ±X + const . (6.38)

Unlike in the (t, r∗) coordinates, however, the horizon r = 2GM is not infinitely far away, but

maps to

T = ±X . (6.39)

Note again that it is a null surface. Surfaces of constant r, satisfy T 2 − X2 = const and are

therefore hyperbolae in the X–T planes. Surfaces of constant t are given by

T

X
= tanh

(
t

4GM

)
, (6.40)

i.e. straight lines with slope tanh(t/4GM). Note that as t → ±∞ the curves given by (6.40)

become the same as (6.39); therefore t = ±∞ represents the same surface as r = 2GM . All of

this is very similar to what we found in Rindler space.
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Kruskal diagram

Figure 32 shows the Schwarzschild spacetime in Kruskal coordinates. Shown are both the X–T

coordinates and the rotated U–V coordinates. As we have seen in (6.39), the horizon r = 2GM

corresponds to the two null surfaces:

r = 2GM ⇒ T = ±X (UV = 0) . (6.41)

The null surface T = X (or U = 0) is the horizon of the black hole (the future horizon), while

the null surface T = −X (or V = 0) is the horizon of the white hole (the past horizon). Region I

is the spacetime outside of the black hole (white hole). This is similar to the Rindler geometry

shown in Fig. 25, but now for r ∈ (2GM,∞). Regions II and III and the inside of the black hole

and the white hole, respectively.

The singularity is mapped to two spacelike surfaces:

r = 0 ⇒ T = ±
√
X2 + 1 (UV = 1) . (6.42)

In Fig. 32, this is shown as two disconnected hyperbolae. The surface T = ±
√
X2 + 1 (or U, V >

0) is the singularity of the black hole, while T = ±−
√
X2 + 1 (or U, V < 0) is the singularity of

the white hole. You may have thought that the singularity of a black hole was a point that traces

out a timelike worldline (like a massive particle). The diagram shows that this is not the case.

David Tong describes this very clearly: “Once you pass through the horizon, the singularity isn’t

something that sits to your left or to your right: it is something that lies in your future. This

makes it clear why you cannot avoid the singularity when inside a black hole. It is your fate.

Similarly, the singularity of the white hole lies in the past. It is similar to the singularity of the

Big Bang.”

Outside of the horizon, we have a timelike Killing vector K = ∂t that allows us to define the

conserved energy of particles along geodesics. It is interesting to see what happens to this Killing

vector inside the horizon. In the Kruskal coordinates, we have

K =
∂

∂t
=
∂V

∂t

∂

∂V
+
∂U

∂t

∂

∂U
=

1

4GM

(
V

∂

∂V
− U ∂

∂U

)
. (6.43)

Using the Kruskal metric (6.35), we find that the norm of K is

gµνK
µKν = −

(
1− 2GM

r

)
. (6.44)

For r > 2GM , we have K2 < 0 and the Killing vector is timelike as expected. Inside the horizon,

however, the norm changes sign and the Killing vector becomes spacelike. When we say that a

spacetime is stationary, we mean that is has a timelike Killing vector. This is not the case for

the geometry inside the horizon. The full black hole geometry therefore is not time-independent.

What is region IV in the Kruskal diagram? It is another mirror copy of the black hole, now

covered by U > 0 and V < 0. To see this, we can write the Kruskal coordinates as in (6.32), but

with different signs,
U = +e−u/4GM ,

V = −ev/4GM .
(6.45)
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← t = const

← r = const
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Figure 32. Kruskal diagram of the Schwarzschild solution. Region I corresponds to the outside of the

black hole. Region II is the inside of the black hole, while region III is the inside of the white hole. Region

IV is the mirror image of region I. Regions I and IV are connected by a wormhole (or Einstein-Rosen

bridge).

Doing all the coordinate transformations in reverse then shows that region IV is again described

by the Schwarzschild metric. Note that regions I and IV are spacelike separated, so that an

observer in I cannot send a signal to IV. The regions are causally disconnected. Nevertheless, it is

still rather freaky. The full spacetime has two copies of the black hole exterior. The two regions

are connected by a wormhole (or Einstein-Rosen bridge). Because the regions are spacelike

separated, however, it is not like the science fiction wormholes that you could travel through.

Penrose diagram∗

A black hole is defined as the region of space from which light cannot escape to infinity. The

boundary of that region is the event horizon. In the Kruskal diagram, infinity is still a large

distance away. A more precise way to capture the black geometry maps the points at infinity

to a finite distance. This leads to the famous Penrose diagram which allows us to draw the

entire spacetime on a sheet of paper. For the Schwarzschild black hole, the Penrose diagram is

very similar to the Kruskal diagram; we just have to straighten out a few lines. Penrose diagram

play an important role in exhibiting the causal structure of the spacetime, so it is worth learning
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Figure 33. Penrose diagram of two-dimensional Minkowski space.

what they are all about.

Two-dimensional Minkowski.—Let us start with a simple example: two-dimensional Minkowski

space, with metric

ds2 = −dt2 + dx2 . (6.46)

We first introduce light cone coordinates,

u = t− x ,
v = t+ x ,

(6.47)

so that the metric becomes

ds2 = −dudv . (6.48)

The range of the coordinates is the entire real lines, u, v ∈ (−∞,∞). We would like to map this

to a finite range. One choice of such a mapping is

u = tan ũ ,

v = tan ṽ ,
(6.49)

so that ũ, ṽ ∈ (−π/2,+π/2). In the new coordinates, the metric becomes

ds2 = − 1

cos2 ũ cos2 ṽ
dũdṽ . (6.50)

The crucial point is that the overall factor does not change the causal structure since it doesn’t

affect null geodesics which obey ds2 = 0. We therefore define a new metric

ds̃2 = (cos2 ũ cos2 ṽ)ds2 = −dũdṽ . (6.51)

The two line elements ds̃2 and ds2 are related by a conformal transformation and have the same

causal structure. The Penrose diagram is the graphical representation of the spacetime in the

compactified coordinates ũ and ṽ.

74



We draw the light cone coordinates ũ and ṽ at 45 degrees, so that light rays travel at 45

degrees. Figure 33 show the resulting Penrose diagram. The boundaries of the diagram are

different types of infinity:

• i±: All timelike geodesics start at i−, with (ũ, ṽ) = (−π/2,−π/2) and end at i+, with

(ũ, ṽ) = (+π/2,+π/2). These points are called past and future timelike infinity, re-

spectively.

• i0: All spacelike geodesics start and end at the two point labelled i0, either (ũ, ṽ) =

(−π/2,+π/2) or (ũ, ṽ) = (+π/2,−π/2). These points are called spacelike infinity.

• I ±: All null geodesics start on I − (“scri-minus”), with ũ = −π/2 or ṽ = −π/2, and end

on I + (“scri-plus”), with ũ = +π/2 or ṽ = +π/2. These boundaries are called past and

future null infinity, respectively.

Four-dimensional Minkowski.—Let us repeat this exercise for four-dimensional Minkowski space:

ds2 = −dt2 + dr2 + r2dΩ2 . (6.52)

Going to light cone coordinates,
u = t− r ,
v = t+ r ,

(6.53)

the metric becomes

ds2 = −dudv +
1

4
(u− v)2dΩ2 , (6.54)

and, using the same mapping as in (6.49), we get

ds2 =
1

4 cos2 ũ cos2 ṽ

(
−4dũdṽ + sin2(ũ− ṽ)dΩ2

)
. (6.55)

I +

I −

i+

i−

i0

Figure 34. Penrose diagram of four-dimensional Minkowski space. Shows is also a null geodesics (in blue)

starting at I − and ending at I +.
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To study the causal structure of the spacetime, it again suffices to use the new metric

ds̃2 = −4dũdṽ + sin2(ũ− ṽ)dΩ2 . (6.56)

One difference compare to the 2D case is that v ≥ u because r ≥ 0. This means that the

compactified coordinates obey

− π

2
≤ ũ ≤ ṽ ≤ π

2
. (6.57)

To draw a two-dimensional diagram, we suppressed the angular coordinates. The Penrose diagram

of four-dimensional Minkowski space is shown in Fig. 34. The vertical line corresponds to the

point r = 0 and is not a boundary of the spacetime. A null geodesic that starts on I − will

simply be reflected at the vertical line and end up at I +.

Back to Schwarzschild.—After this digression, we are ready to return to the Schwarzschild geom-

etry. The metric in the light cone Kruskal coordinates is

ds2 = −32(GM)3

r
e−r/2GMdUdV + r2dΩ2 . (6.58)

As in (6.49), we define

U = tan Ũ ,

V = tan Ṽ ,
(6.59)

so that Ũ , Ṽ ∈ (−π/2,+π/2). The metric then becomes

ds2 =
1

cos2 Ũ cos2 Ṽ

[
−32(GM)3

r
e−r/2GMdŨdṼ + r2 cos2 Ũ cos2 Ṽ dΩ2

]
. (6.60)

I +

I −

i+

i−

i0

r = 0

r = 0

H+

H−

Figure 35. Penrose diagram for the Schwarzschild black hole. (Figure by Robert McNees.)
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Dropping the conformal factor, we define

ds̃2 = −32(GM)3

r
e−r/2GMdŨdṼ + r2 cos2 Ũ cos2 Ṽ dΩ2 . (6.61)

The singularity at r = 0 (or UV = 1) now is at

tan Ũ tan Ṽ = 1 ⇒ sin Ũ sin Ṽ − cos Ũ cos Ṽ = 0

cos(Ũ + Ṽ ) = 0 ⇒ Ũ + Ṽ = ±π/2 .
(6.62)

The singularities are therefore straight, horizontal lines in the Penrose diagram. In the absence of

the singularities, the Penrose diagram would be diamond-shaped, like that of 2D Minkowski. The

singularities cut off the top and bottom and the Penrose diagram of the Schwarzschild geometry

is that shown in Fig. 35.

Real black holes

We don’t think that the regions III and IV of the Kruskal diagram can arise in a physical

situation such as a black hole forming from a collapsing star. Figure 36 shows the alternative

Penrose diagram for matter collapsing into black hole. We see that the diagram is a hybrid of

the Penrose diagram for the Schwarzschild geometry (see Fig. 36) and that of four-dimensional

Minkowski space (see Fig. 34). We see that the spacetime of a realistic black hole shares the

singularity and the future event horizon with the maximally extended Schwarzschild solution,

without any white hole, past horizon, or separate asymptotic region.

I +

I −

i+

i−

i0

r = 0

r = 0

Figure 36. Penrose diagram for a real black hole formed from a collapsing star. In interior of the star

(gray region) is nonvacuum and therefore is not described by the Schwarzschild metric.
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6.2 Charged Black Holes

The next simplest black hole solutions are those with electric or magnetic charge. We don’t think

that such charged black holes exist in nature, but they are nevertheless interesting for theoretical

reasons.

Charged black holes are solutions of the Maxwell-Einstein theory, with action

S =

∫
d4x
√−g

[
1

16πG
R− 1

4
F 2
µν

]
. (6.63)

Varying this action with respect to the vector potential Aµ gives the Maxwell equation, ∇µFµν =

0, while variation with respect to the metric leads to the Einstein equation:

Rµν −
1

2
Rgµν = 8πG

(
Fµ

ρFνρ −
1

4
gµνF

ρσFρσ

)
. (6.64)

We will not derive the black hole solution to these equations, but only present it and discuss

some of its main properties. Maxwell equation admits a spherically symmetric solution for the

gauge field:

A = − Qe
4πr

dt− Qm
4π

cos θ dφ , (6.65)

where Qe and Qm are the electric and magnetic charges, respectively. The spacetime is described

by the Reissner-Nordstrom solution

ds2 = −∆(r) dt2 + ∆−1(r) dr2 + r2dΩ2 , (6.66)

where

∆(r) ≡ 1− 2GM

r
+
Q2

r2
with Q2 ≡ G

2π
(Q2

e +Q2
m) . (6.67)

This solution is not too dissimilar from the Schwarzschild solution. The function in the metric

can be written as

∆(r) =
1

r2
(r − r+)(r − r−) , (6.68)

where

r± = GM ±
√
G2M2 −Q2 . (6.69)

There are qualitatively different solutions depending on the size of Q (relative to GM):

• For Q→ 0, we get r− → 0 and r+ → 2GM . The inner horizon therefore coincides with the

physical singularity at the origin and the outer horizon becomes the standard Schwarzschild

event horizon.

• For |Q| > GM , the function ∆(r) has no zeros and the corresponding black hole has no

horizon; like the Schwarzschild solution for negative mass. The singularity at r = 0 is

then called a naked singularities. We believe that such a naked singularity is unphysical;

roughly because it would require the total energy of the hole to be less than the contribution

from the energy of the electromagnetic fields alone, which would require the mass of the

matter to be negative. The absence of naked singularities in nature is called “cosmic

censorship”.

78



• For |Q| < GM , the function ∆(r) has two zeros and the black hole has two horizons:

an outer horizon at r+ and an inner horizon at r−. We will not analyze this situation

in detail, but just state some of the facts, highlighting especially the differences with the

Schwarzschild case: The singularity at r = 0 is now a timelike line, not spacelike surface

like for Schwarzschild. The outer horizon is like the event horizon of the Schwarzschild

black hole. In particular, the coordinate r switches from being at spacelike coordinate for

r > r+, to being a timelike coordinate for r− < r < r+, and you necessarily have to move in

the direction of decreasing r. However, at r = r−, the coordinate r switches back to being

spacelike and you do not have to hit the singularity at r = 0. You can chose to continue to

r = 0 or move back in the direction of increasing r back through r = r−. Then r becomes a

timelike coordinate again and you are forced to move in the direction of increasing r. You

will eventually be spit out of hole at r = r+, like emerging from a white hole.

• Finally, for |Q| = GM , we get an extremal black hole. The inner and outer horizons

merge into one and the metric takes the form

ds2 = −
(

1− GM

r

)2

dt2 +

(
1− GM

r

)−2

dr2 + r2dΩ2 . (6.70)

It is interesting to take the near horizon limit of this geometry by defining

r = GM + η , (6.71)

with η � GM . Expanding for small η, the metric takes the form

ds2 = − η2

(GM)2
dt2 +

(GM)2

η2
dη2︸ ︷︷ ︸

AdS2

+ (GM)2dΩ2︸ ︷︷ ︸
S2

. (6.72)

This metric is sometimes called the Robinson-Bertotti metric and denoted by AdS2 × S2.

The fact that an anti-de Sitter geometry is found in the near horizon geometry of extremal

black holes was the origin of the AdS/CFT correspondence.

6.3 Rotating Black Holes

Real black holes are often rotating. This breaks the spherical symmetry of the Schwarzschild

solution, so the metric becomes a bit more complicated. In Boyer-Lindquist coordinates, the

so-called Kerr solution is

ds2 = −∆

ρ2
(dt− a sin2 θ dφ)2 +

sin2 θ

ρ2

[
(r2 + a2)dφ− adt

]2
+
ρ2

∆
dr2 + ρ2dθ2 , (6.73)

where a ≡ J/M is the angular momentum per unit mass and

∆ ≡ r2 − 2GMr + a2 ,

ρ2 ≡ r2 + a2 cos2 θ .
(6.74)
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ergoregion

outer horizon

Figure 37. A rotating black hole has an ergoregion, where the Killing vector ∂t becomes spacelike. Mass

and angular momentum of the black hole can be extracted through the Penrose process, the classical

analog of Hawking radiation.

Event horizons of the black hole correspond to grr = ∆/ρ2 = 0, or

∆(r) = r2 − 2GMr + a2 = 0 . (6.75)

As for the Reissner-Nordstrom solution, there are three different cases. For a > GM , we have a

naked singularity. The extremal case is a = GM . The case of most interest is a < GM which

corresponds to the black holes observed in the real world. There are then two horizons at

r± = GM ±
√
G2M2 − a2 . (6.76)

The causal structure of the Kerr black hole is very similar to that of the Reissner-Nordstrom

black hole.

Something interesting happens in the region just outside the horizon of the Kerr black hole.

Consider the Killing vector

K =
∂

∂t
. (6.77)

Its norm is

gµνK
µKν = gtt = − 1

ρ2
(r2 + 2GMr + a2 cos2 θ) . (6.78)

For large r, this is negative and K is timelike. However, K becomes null on the surfaces defined

by

r2 + 2GMr + a2 cos2 θ = 0 ⇒ r = GM ±
√
G2M2 − a2 cos2 θ . (6.79)

The smaller root is inside the horizon, but the larger is outside, except at θ = 0, π where it

touches. There is therefore a region outside the horizon—called the ergoregion—where K

becomes spacelike (see Fig. 37):

GM +
√
G2M2 − a2 < r < GM +

√
G2M2 − a2 cos2 θ . (6.80)

Interesting things can therefore happen even before you cross the horizon.

In Section 4.3, you learned that the conserved energy of a test particle is E = −KµP
µ. When

K is timelike then E > 0, since both K and P are then timelike and their inner product is
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negative. However, inside the ergoregion, K becomes spacelike and we can have particles with

E = −KµP
µ < 0 . (6.81)

This leads to a way to extract energy from a rotating black hole called the Penrose process.

It allows you to enter the ergoregion, throw an object into the black hole and emerge with more

energy than you entered with. In the process, the black hole loses a bit of its mass and angular

momentum. The Penrose process is the classical analog of Hawking radiation. In fact, Hawking

was inspired by the Penrose process to come up with the concept of Hawking radiation.
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7 Cosmology

One of the most important applications of general relativity is to cosmology. Our goal in this

chapter is to derive, and then solve, the equations governing the evolution of the entire universe.

This may seem like a daunting task. Fortunately, the coarse-grained properties of the universe

are remarkably simple. While the distribution of galaxies is clumpy on small scales, it becomes

more and more uniform on large scales. In particular, when averaged over sufficiently large

distances, the universe looks homogeneous (the same at every point in space) and isotropic (the

same in all directions). This leads to a simple mathematical description of the universe because

the spacetime geometry takes a very simple form.

7.1 Robertson-Walker Metric

The spatial homogeneity and isotropy of the universe mean that it can be represented by a

time-ordered sequence of three-dimensional spatial slices, Σt, each of which is homogeneous and

isotropic (see Fig. 38). The four-dimensional line element can then be written as10

ds2 = −dt2 + a2(t)d`2 , (7.1)

where d`2 ≡ γij(xk) dxidxj is the line element on Σt and a(t) is the scale factor, which describes

the expansion of the universe. We will first determine the allowed forms of the spatial metric

γij and then discuss how the evolution of the scale factor is related to the matter content of the

universe.

flat spherical hyperbolic

Figure 38. The spacetime of the universe can be foliated into flat, spherical (positively-curved) or

hyperbolic (negatively-curved) spatial hypersurfaces.

Homogeneous and isotropic three-spaces must have constant intrinsic curvature R(3)[γij ].

There are then only three options: the curvature of the spatial slices can be zero (flat), posi-

tive (spherical) or negative (hyperbolic). Let us determine the metric for each case.

Assuming isotropy about a fixed point r = 0, the spatial metric can be written as

d`2 ≡ γijdxidxj = e2α(r)dr2 + r2dΩ2 .

10Skeptics might worry about uniqueness. Why didn’t we include a g0i component? Because it would introduce

a preferred direction and therefore break isotropy. Why didn’t we allow for a nontrivial g00 component? Because

it can be absorbed into a redefinition of the time coordinate, dt′ ≡ √g00 dt.
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It is a straightforward, but tedious, calculation to derive the Ricci scalar for the metric γij . The

nonvanishing Christoffel symbols are

Γrrr = ∂rα , Γrθθ = −re−2α(r) , Γrφφ = −re−2α sin2 θ ,

Γθrθ = r−1 , Γθφφ = − sin θ cos θ ,

Γφrφ = r−1 , Γφθφ = cot θ .

(7.2)

The components of the Ricci tensor are

Rrr =
2

r
∂rα ,

Rθθ = e−2α(r)(r∂rα− 1) + 1 ,

Rφφ =
[
e−2α(r)(r∂rα− 1) + 1

]
sin2 θ ,

(7.3)

so that the three-dimensional scalar curvature becomes

R(3) = γijRij =
2

r2

[
1− d

dr

(
re−2α(r)

)]
. (7.4)

Setting (7.4) equal to 6K, with K a constant, and integrating, we get

e2α(r) =
1

1−Kr2 + br−1
, (7.5)

where the parameter b arises as a constant of integration. For the geometry to be locally flat

near the origin, we need e2α → 1 (or at least a finite constant) as r → 0. If b 6= 0 then we would

have e2α → 0, so we must set b = 0. The spatial metric then is

d`2 =
dr2

1−Kr2
+ r2dΩ2 . (7.6)

It is also convenient to define K ≡ k/R2
0, where k = 0,+1,−1. The three different values of k

correspond to the sign of the scalar curvature and hence parameterize whether the spatial slices

are flat, spherical or hyperbolic. The scale R0 is the curvature radius.

The spacetime metric (7.1) then is

ds2 = −dt2 + a2(t)

[
dr2

1− kr2/R2
0

+ r2dΩ2

]
. (7.7)

This is called the Robertson-Walker metric, or sometimes the Friedmann-Robertson-Walker

(FRW) metric. Notice that the symmetries of the universe have reduced the ten independent

components of the spacetime metric gµν to a single function of time, the scale factor a(t), and a

constant, the curvature scale R0. We will use the convention that the scale factor today, at time

t = t0, is normalized as a(t0) ≡ 1.
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7.2 Friedmann Equation

We would like to determine how the scale factor evolves. This is determined by the Einstein

equation. Let’s see how to apply it to the FRW geometry (7.7).

Substituting gµν = diag(−1, a2γij) into the definition

Γµαβ =
1

2
gµλ(∂αgβλ + ∂βgαλ − ∂λgαβ) , (7.8)

it is straightforward to compute the components of the Christoffel symbol. I will derive Γ0
ij as an

example and leave the rest as an exercise. All Christoffel symbols with two time indices vanish,

i.e. Γµ00 = Γ0
0β = 0. The only nonzero components are

Γ0
ij = aȧγij ,

Γi0j =
ȧ

a
δij ,

Γijk =
1

2
γil(∂jγkl + ∂kγjl − ∂lγjk) ,

(7.9)

or are related to these by symmetry (note that Γµαβ = Γµβα).

Example Let us derive Γ0
αβ for the metric (7.7). The Christoffel symbol with upper index equal to

zero is

Γ0
αβ =

1

2
g0λ(∂αgβλ + ∂βgαλ − ∂λgαβ) . (7.9)

The factor g0λ vanishes unless λ = 0, in which case it is equal to −1. Hence, we have

Γ0
αβ = −1

2
(∂αgβ0 + ∂βgα0 − ∂0gαβ) . (7.9)

The first two terms reduce to derivatives of g00 (since gi0 = 0). The FRW metric has constant g00, so

these terms vanish and we are left with

Γ0
αβ =

1

2
∂0gαβ . (7.9)

The derivative is only nonzero if α and β are spatial indices, gij = a2γij . In that case, we find

Γ0
ij = aȧγij , (7.9)

which confirms the result in (7.9).

Given the Christoffel symbols, nothing stops us from computing the Ricci tensor

Rµν ≡ ∂λΓλµν − ∂νΓλµλ + ΓλλρΓ
ρ
µν − ΓρµλΓλνρ . (7.10)

We don’t need to calculate Ri0 = R0i, because it is a three-vector and therefore must vanish

due to the isotropy of the Robertson-Walker metric. (Try it if you don’t believe me!) The
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non-vanishing components of the Ricci tensor are

R00 = −3
ä

a
, (7.11)

Rij =

[
ä

a
+ 2

(
ȧ

a

)2

+ 2
K

a2

]
gij . (7.12)

I will derive R00 as an example and leave Rij as a (tedious) exercise. Notice that we had to find

that Rij ∝ gij to be consistent with homogeneity and isotropy.

Example Setting µ = ν = 0 in (7.10), we have

R00 = ∂λΓλ00 − ∂0Γλ0λ + ΓλλρΓ
ρ
00 − Γρ0λΓλ0ρ . (7.13)

Since Christoffel symbols with two time indices vanish, this reduces to

R00 = −∂0Γi0i − Γi0jΓ
j
0i . (7.14)

Using Γi0j = (ȧ/a)δij , we find

R00 = − d

dt

(
3
ȧ

a

)
− 3

(
ȧ

a

)2

= −3
ä

a
, (7.15)

which is the result cited in (7.11).

Given the components of the Ricci tensors, it is now straightforward to complete the calcula-

tion. The Ricci scalar is

R = gµνRµν

= −R00 +
1

a2
γijRij = 3

ä

a
+ δii

[
ä

a
+ 2

(
ȧ

a

)2

+ 2
K

a2

]

= 6

[
ä

a
+

(
ȧ

a

)2

+
K

a2

]
, (7.16)

and the nonzero components of the Einstein tensor are

G00 = 3

[(
ȧ

a

)2

+
K

a2

]
, (7.17)

Gij = −
[

2
ä

a
+

(
ȧ

a

)2

+
K

a2

]
gij . (7.18)

I leave it to you to verify that these components of the Einstein tensor follow from our results

for the Ricci tensor.

On large scales, the expansion of the universe is sourced by matter whose energy-momentum

tensor is that of a perfect fluid

Tµν = (ρ+ P )UµUν + Pgµν . (7.19)
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We take the fluid to be at rest in the preferred frame of the universe, so that Uµ = (1, 0, 0, 0) in

the FRW coordinates. We then have

T00 = ρ , (7.20)

Tij = Pgij . (7.21)

We can now assemble all the pieces and look at the Einstein equation:

Gµν + Λgµν = 8πGTµν . (7.22)

It is conventional to move the cosmological constant term to the right-hand side and interpret it

as part of the energy-momentum tensor, T
(Λ)
µν ≡ −(Λ/8πG)gµν , with ρΛ = Λ/8πG and PΛ = −ρΛ.

The cosmological constant is then also referred to as a form of dark energy.

The temporal component of the Einstein equation is

G00 = 8πGT00 ⇒
(
ȧ

a

)2

=
8πG

3
ρ− K

a2
. (7.23)

This is the Friedmann equation, one of the most important equations in cosmology. The

left-hand side describes the expansion rate of the universe as characterized by the Hubble pa-

rameter

H ≡ ȧ

a
. (7.24)

Today’s value of the Hubble parameter is the Hubble constant, H0 ≈ 70 km/sec/Mpc, where

Mpc stands for megaparsec, which is 3 × 1022 m. Typical cosmological scales are set by the

“Hubble length” and the “Hubble time”:

dH ≡ cH−1
0 ≈ 4300 Mpc , (7.25)

tH ≡ H−1
0 ≈ 14 billion years . (7.26)

These a rough estimates for the size of the observable universe and its age.

The spatial components of the Einstein equation imply

Gij = 8πGTij ⇒ 2
ä

a
+

(
ȧ

a

)2

+
K

a2
= −8πGP

⇒ ä

a
= −4πG

3
(ρ+ 3P ) . (7.27)

This equation goes by several names: it is called the “second Friedmann equation”, the “Ray-

chaudhuri equation” or the ”acceleration equation”.

To complete the system of equations, we need to know how the density and pressure of

the fluid evolve. This follows from ∇µTµν = 0. Using that ∇αgµν = 0, UνU
ν = −1 and

Uν∇µUν = 1
2∇µ(UνU

ν) = 0, we have

0 = −Uν∇µTµν = Uµ∇µρ+ (ρ+ P )∇µUµ . (7.28)
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In the rest frame, with Uµ = (1, 0, 0, 0), this becomes

ρ̇+ 3
ȧ

a
(ρ+ P ) = 0 , (7.29)

where we used that ∇µUµ = ∂µU
µ + ΓµµλU

λ = Γii0U
0 = 3ȧ/a. Equation (7.29) is the continuity

equation.

Finally, we must specify a relation between the density ρ and the pressure P . The fluids of

interest in cosmology can be described by a constant equation of state:

w =
P

ρ
. (7.30)

Important special cases are w = 0 (for pressureless matter), w = 1/3 (for radiation) and w = −1

(for dark energy). For a constant equation of state, the continuity equation (7.29) implies

ρ̇

ρ
= −3(1 + w) ⇒ ρ =

ρ0

a3(1+w)
∝


a−3 matter

a−4 radiation

a0 dark energy

(7.31)

where ρ0 is an integration constant. Recall that we typically use the convention that the scale

factor today is a(t0) ≡ 1, in which case ρ0 is the density today. Note that a−3 for pressureless

matter is the expected scaling of energy density with volume, V ∝ a3. The energy of radiation

decreases as E ∝ a−1, so that the density scales as a−4. Dark energy is a strange case where

the energy density stays constant as the volume increases, which means that energy must be

produced. This suggests that dark energy is somehow a property of empty space itself: As

the universe expands, more space is being created and the dark energy increases in the same

proportion.

Figure 39 shows the evolution of the energy densities of the three main components in our

universe. We see that the universe is often dominated by a single component: first radiation, then

matter and finally dark energy. In that case, we can easily solve the Friedmann equation (7.23):

(
ȧ

a

)2

∝ 1

a3(1+w)
⇒ a(t) =

(
t

t0

)2/3(1+w)

∝


t2/3 matter

t1/2 radiation

eH0t dark energy

(7.32)

This shows how the universe expands in the three different stages of its evolution.

7.3 Our Universe

A central task in cosmology is to measure the parameters occurring in the Friedmann equation

(7.23) and hence determine the composition of the universe. The density ρ is the sum of multiple

components:

photons (γ) neutrinos (ν)︸ ︷︷ ︸
radiation (r)

baryons (b)︷ ︸︸ ︷
electrons (e) protons (p) cold dark matter (c)︸ ︷︷ ︸

matter (m)

.
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Figure 39. Evolution of the energy densities in the universe. We see that there is often one dominant

component: first radiation, then matter and finally dark energy. Sometimes two components are relevant

during the transitions between the different eras.

A flat universe (k = 0) corresponds to the following critical density today:

ρcrit,0 =
3H2

0

8πG
= 8.9× 10−30 grams cm−3

= 1.3× 1011M�Mpc−3

= 5.1× 10−6 protons cm−3 . (7.33)

It is convenient to measure all densities relative to the critical density and work with the following

dimensionless density parameters

Ωi,0 ≡
ρi,0
ρcrit,0

, i = r,m,Λ, . . . (7.34)

In the literature, the subscript ‘0’ on the density parameters Ωi,0 is often dropped, so that Ωi

denotes the density today in terms of the critical density today. From now on, I will follow this

convention. The Friedmann equation (7.23) can then be written as

H2

H2
0

= Ωra
−4 + Ωma

−3 + Ωka
−2 + ΩΛ , (7.35)

where we have introduced the curvature “density” parameter, Ωk ≡ −k/(R0H0)2. Note that

Ωk < 0 for k > 0. Evaluating both sides of the Friedmann equation at the present time, with

a(t0) ≡ 1, leads to the constraint

1 = Ωr + Ωm + ΩΛ + Ωk . (7.36)
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The measured values of these parameters are

Ωr = 8.99× 10−5 , Ωm = 0.32 , ΩΛ = 0.68 , |Ωk| < 0.005 , (7.37)

with Ωb = 0.05 and Ωc = 0.27. We see that most of the stuff in the universe is invisible—dark

matter and dark energy—only 5% is ordinary matter (stars, planets, you and me). Explaining

what exactly dark matter and dark energy are remains one of the great open challenges of modern

physics.
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8 Gravitational Waves

Just like the Maxwell equations allow for electromagnetic wave solutions, the Einstein equations

admit propagating waves—called gravitational waves—as solutions. Although these gravita-

tional waves were predicted over a century ago, they we detected only very recently. In this

chapter, I will give a brief sketch of the physics of gravitational waves. More can be found in

David Tong’s lecture notes.

8.1 Linearized Gravity

Gravitational waves are small ripples in the spacetime and can therefore be described by a small

perturbation around Minkowski space:

gµν = ηµν + hµν , (8.1)

with |hµν | � 1. We will work at leading order in the fluctuations hµν . At this order, the indices

on hµν can be raised with ηµν rather than gµν . For example, we have hµν = ηµρηνσhρσ. Moreover,

the inverse metric is

gµν = ηµν − hµν , (8.2)

and the Christoffel symbols are

Γσµν =
1

2
ησλ(∂µhνλ + ∂νhµλ − ∂λhµν) . (8.3)

The Riemann tensor is

Rσµρν = ∂ρΓ
σ
µν − ∂νΓσµρ + ΓλµνΓσρλ − ΓλρµΓσνλ

= ∂ρΓ
σ
µν − ∂νΓσµρ

=
1

2
ησλ(∂ρ∂µhνλ − ∂ρ∂λhµν − ∂ν∂µhρλ + ∂ν∂λhµρ) .

(8.4)

where we have dropped the ΓΓ terms because they are second order in h. The Ricci tensor then

is

Rµν =
1

2
(∂λ∂µhνλ −�hµν + ∂λ∂νhµλ − ∂µ∂νh) , (8.5)

with h ≡ hµµ and � = ∂µ∂µ. Finally, the Ricci scalar is

R = ∂µ∂νhµν −�h . (8.6)

Assembling all the pieces, we find that the linearized Einstein tensor is

Gµν =
1

2

[
∂λ∂µhνλ + ∂λ∂νhµλ −�hµν − ∂µ∂νh− (∂ρ∂σhρσ −�h)ηµν

]
. (8.7)

The Bianchi identity ∇µGµν = 0 becomes ∂µGµν = 0 for the linearized Einstein tensor. It is easy

to check that this is indeed satisfied for the tensor in (8.7). The Einstein equation is

∂λ∂µhνλ + ∂λ∂νhµλ −�hµν − ∂µ∂νh− (∂ρ∂σhρσ −�h)ηµν = 16πGTµν . (8.8)

Gravitational waves are solutions to the vacuum equation, but are sourced by a time varying Tµν .
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Gauge symmetry

Recall that under an infinitesimal change of coordinates, xµ → xµ− ξµ(x), the metric changes by

δgµν = ∇µξν +∇νξµ . (8.9)

For the perturbed metric (8.1), this can be viewed as a transformation of the linearized field hµν .

At leading order (in both hµν and ξµ), we can replace the covariant derivatives by partial deriva-

tives and get

hµν → hµν + ∂µξν + ∂νξµ . (8.10)

This is very similar to the gauge transformation of the vector potential, Aµ → Aµ + ∂µα, in

Maxwell’s theory. Just as the electromagnetic field strength Fµν = ∂µAν−∂νAµ is gauge invariant,

so is the linearized Riemann tensor Rσµρν .

Gauge fixing

In electromagnetism, it is often useful to pick a gauge. For example, imposing the Lorenz gauge,

∂µAµ = 0, the Maxwell equations, ∂µF
µν = Jν , reduce to the wave equations

�Aν = Jν . (8.11)

The analog of the Lorenz gauge in linearized gravity is the de Donder gauge

∂µhµν −
1

2
∂νh = 0 . (8.12)

In the full nonlinear theory, the de Donder gauge corresponds to the condition gµνΓρµν = 0. In

this gauge, the Einstein equation (8.8) greatly simplifies to

�hµν −
1

2
�h ηµν = −16πGTµν . (8.13)

This can be further cleaned up by defining the trace-reversed perturbation

h̄µν = hµν −
1

2
h ηµν , (8.14)

so that

�h̄µν = −16πGTµν . (8.15)

We see that the linearized Einstein equation has just become a set of wave equations, which are

very similar to (8.11) in electrodynamics.

Newtonian limit

It is useful to check that this reproduces our earlier results in the Newtonian limit. In this

limit, the metric is nearly static, so we can replace � = −∂2
t +∇2 by the Laplacian ∇2. Using

T00 = ρ(x) and T0i = Tij = 0, the Einstein equations (8.15) become

∇2h̄00 = −16πGρ(x) ,

∇2h̄0i = ∇2h̄ij = 0 .
(8.16)
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This reproduces the Poisson equation, ∇2Φ = 4πGρ if h̄00 = −4Φ(x) and h̄0i = hij = 0. Using

h̄ = +4Φ(x), we get

h00 = −2Φ ,

h0i = 0 ,

hij = −2Φδij ,

(8.17)

and the full metric is

ds2 = −(1 + 2Φ)dt2 + (1− 2Φ)dx2 , (8.18)

which is indeed the expected line element corresponding to Newtonian gravity.

8.2 Wave Solutions

Gravitational waves are solutions of the vacuum equation

�h̄µν = 0 . (8.19)

The solutions can be written as

h̄µν = Re(Hµνe
ikλx

λ
) , (8.20)

where Hµν is a complex polarization matrix and kµ is the wavevector. The real part on the

right-hand side is often dropped, but it should be kept in mind that it is secretly there, so that

the final solution is real. Acting with ∂µ on (8.20) pulls down a factor of ikµ from the exponential.

This implies that �h̄µν = −(kµk
µ)h̄µν , so that (8.20) solves (8.19) if kµ is a null vector

kµk
µ = 0 . (8.21)

Writing kµ = (ω,k), with ω the frequency, this is equivalent to ω = ±|k|, showing that the

gravitational wave travels at the speed of light.

Polarizations

Naively, the polarization matrix Hµν has 10 components. However, not all of these are indepen-

dent because of the gauge symmetry of the theory. Let’s see how many independent polarizations

survive.

It is useful to first remind ourselves how this works for electromagnetic waves. The four-

vector potential Aµ has 4 components, but some are related by gauge transformations. The

Lorenz gauge, ∂µAµ = 0, implies one scalar constraint, so it reduces the number of independent

components from 4 to 3. However, the Lorenz condition doesn’t fix the gauge completely. Con-

sider the gauge transformation Aµ → Aµ + ∂µα, so that ∂µAµ → ∂µAµ + �α. This keeps Aµ in

Lorenz gauge if �α = 0. The freedom to perform these residual gauge transformations reduces

the number of independent components to 2. These are the familiar two transverse polarizations

of an electromagnetic wave.

We can now repeat the argument for gravitational waves. First of all, the de Donder gauge

condition, ∂µh̄µν = 0, implies

kµHµν = 0 , (8.22)
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so that the polarization has to be transverse to the direction of propagation. This reduces the

number of independent polarizations from 10 to 6. However, the de Donder condition doesn’t fix

the gauge completely. Consider the gauge transformation hµν → hµν + ∂µξν + ∂νξµ, so that

h̄µν → h̄µν + ∂µξν + ∂νξµ − ∂σξσηµν . (8.23)

This leaves the solution in the de Donder gauge, ∂µh̄µν = 0, as long as

�ξµ = 0 ⇒ ξµ = λµe
ikλx

λ
. (8.24)

Under such a gauge transformation, the polarization matrix changes as

Hµν → Hµν + i(kµλν + kνλµ − kσλσηµν) . (8.25)

Polarization matrices that differ by these residual gauge transformations describe the same grav-

itational wave. We can use this to our advantage. For example, we can use the transformation

(8.25) to set

H0µ = 0 and Hµ
µ = 0 . (8.26)

This is called the transverse traceless gauge, which we will assume from now on. In this

gauge, h̄µν = hµν . In the end, we have 10− 4− 4 = 2 independent polarizations.

Consider a wave propagating in the z-direction. Its wavevector is kµ = (ω, 0, 0, ω). The gauge

condition (8.22) then implies H0ν +H3ν = 0. Imposing (8.26), the polarization matrix takes the

following form

Hµν =


0 0 0 0

0 H+ H× 0

0 H× −H+ 0

0 0 0 0

 , (8.27)

where the two functions H+ and H× describe the two polarizations of the gravitational wave.

Stretching space

To visualize the polarizations of the gravitational wave described by (8.27) consider a ring of

particles in the x-y plane:

We would like to know what happens to this ring of particles when a gravitational wave passes by.

In Section 4.5, we derived an equation describing the relative acceleration between neighbouring

geodesics:
D2Bµ

Dτ2
= −Rµνρσ UνUσBρ , (8.28)
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where Bµ is an infinitesimal separation vector and Uµ is the four-velocity (tangent vector) of one

of the geodesics. Let us assume that in the absence of the gravitational wave, the particles are

in the rest frame, with Uµ = (1, 0, 0, 0). The gravitational wave will perturb this at O(h), but

since the Riemann tensor is already O(h), we do not have to include this perturbation in Uµ.

Similarly, we can replace the proper time τ by the coordinate time t and write (8.28) as

d2Bµ

dt2
= −Rµ0ρ0B

ρ , (8.29)

Using hµ0 = 0, the linearized Riemann tensor (8.4) implies

Rµ0ρ0 = −1

2
∂2

0h
µ
ρ , (8.30)

so that the geodesic deviation equation becomes

d2Bµ

dt2
=

1

2

d2hµρ
dt2

Bρ . (8.31)

We now take Bµ to be the vector from the center to any particle on the ring. By studying how

Bµ evolves, we determine how the ring of particles (and hence the space in between them) is

deformed by the gravitational wave. For simplicity, we will solve the geodesic deviation equation

in the z = 0 plane.

We first consider the + polarization (i.e. we set H× = 0). Equation (8.31) then gives

d2B1

dt2
= −ω

2

2
H+e

iωtB1 ,

d2B2

dt2
= +

ω2

2
H+e

iωtB2 ,

(8.32)

These equations can be solved perturbatively in small H+. Keeping terms of order O(h) only, we

get

B1(t) = B1(0)

(
1 +

1

2
H+e

iωt + · · ·
)
,

B2(t) = B2(0)

(
1− 1

2
H+e

iωt + · · ·
)
.

(8.33)

Remember that we should take a real part on the right-hand side. Since the particles are initially

arranged in a circle, we have B1(0)2 + B2(0)2 = R2. Equation (8.33) then describes how the

circle of test particles gets distorted into an ellipse oscillating in a + pattern:

y

x
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We then consider the × polarization (i.e. we set H+ = 0). In this case, the geodesic deviation

equation (8.31) gives
d2B1

dt2
= −ω

2

2
H×eiωtB2 ,

d2B2

dt2
= −ω

2

2
H×eiωtB1 ,

(8.34)

The perturbative solution to these equations now is

B1(t) = B1(0) +
1

2
B2(0)H×eiωt + · · · ,

B2(t) = B2(0) +
1

2
B1(0)H×eiωt + · · · .

(8.35)

We see that the solutions now mix the two directions B1 and B2. To understand what is going

on, it is useful to write the equations in terms of B1 ±B2. Equation (8.35) then implies

B1(t)±B2(t) =
[
B1(0)±B2(0)

](
1± 1

2
H×eiωt + · · ·

)
, (8.36)

which is exactly the same as the equations in (8.33). The distortion induces by the × polarization

is therefore the same as that of the + polarization rotated by 45◦, i.e. the circle of test particles

gets distorted into an ellipse oscillating in a × pattern:

y

x

The stretching and squeezing of space is used in the detection of gravitational waves by laser

interferometers like LIGO. Figure 40 shows an areal view of one of the LIGO detectors in Hanford,

Washington. As a gravitational wave passes, the lengths of the two arms change by

δL

L
≈ H+,×

2
, (8.37)

where L ∼ 3 km is the length of each arm. Since typical sources have H+,× ∼ 10−21, this means

that LIGO has to measure a change in the arm lengths of about δL ∼ 10−18 m. This is a really

small number. To give you some sense of the experimental challenge, note that δL is smaller than

the radius of a proton and around 1012 times smaller than the wavelength of the light used in

the interferometer. It is equivalent to measuring the distance to the nearest star Alpha Centauri

(which is 4.2 light yrs ≈ 4× 1016 m away) to the width of a human hair. It is incredible that this

can be done!

8.3 Creating Waves

To understand the production of gravitational waves, we have to consider the inhomogeneous

wave equation

�h̄µν = −16πGTµν . (8.38)
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Figure 40. Areal view of the Laser Interferometer Gravitational-Wave Observatory (LIGO) at Hanford,

Washington.

We assume that the matter is moving around at non-relativistic speeds in some localized region Σ

(see Fig. 41). The solution of (8.38) outside of Σ can be written in terms of the “retarded Green’s

function”:

h̄µν(t,x) = 4G

∫
Σ

d3y
Tµν(tr,y)

|x− y| , (8.39)

where tr = t−|x−y| is the “retarded time”. The appearance of the retarded time is a consequence

of causality: the gravitational field h̄µν(t,x) is influenced by the matter at position y at the earlier

time tr, so that there is time for this influence to propagate from y to x.

We are interested in the gravitational field at a large distance from the source. Concretely,

we assume that the size of the source is d and we probe the field at a distance r = |x| � d. We

then have

|x− y| = [(x− y) · (x− y)]1/2

=
[
x2 − 2x · y + y2

]1/2
= r

[
1− 2x · y/r2 +O(y2/r2)

]1/2
= r − x · y

r
+ · · · ⇒ 1

|x− y| =
1

r
+

x · y
r3

+ · · · (8.40)

In addition, |x− y| sits inside tr = t− |x− y|, so that

Tµν(tr,y) = Tµν(t− r + x · y/r + · · · ,y)

= Tµν(t− r,y) + Ṫµν(t− r,y)
x · y
r

+ · · · (8.41)

We assume that the motion of matter is non-relativistic, so that Tµν doesn’t change very much

over the time τ ∼ d that it takes light to cross the region Σ. If that is the case then the Taylor
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y

Tµν(tr,y)

h̄µν(t,x)

d

Figure 41. The field h̄µν(t, x) far from a localized source depends on the energy-momentum tensor Tµν
evaluated at the retarded time tr = t− |x− y|.

expansion in (8.41) is a well-defined expansion with each term in the expansion becoming smaller

than the previous one.

At leading order in d/r, we then have

h̄µν(t,x) ≈ 4G

r

∫
Σ

d3y Tµν(t− r,y) , (8.42)

which for h̄00 and h̄0i reads

h̄00(t,x) ≈ 4G

r
E , E ≡

∫
Σ

d3y T00(t− r,y) , (8.43)

h̄0i(t,x) ≈ −4G

r
Pi , Pi ≡

∫
Σ

d3y T0i(t− r,y) . (8.44)

This just recovers the Newtonian limit we discussed in Section 8.1, with h̄00 = −4Φ = 4GM/r

and h̄0i = 0. More interestingly, the solution for the spatial components of the metric,

h̄ij(t,x) ≈ 4G

r

∫
Σ

d3y Tij(t− r,y) , (8.45)

can be written as

h̄ij(t,x) =
2G

r

d2Iij
dt2

(tr) , (8.46)

where Iij is the quadrupole moment of the energy

Iij(tr) ≡
∫

Σ
d3y T 00(tr,y) yiyj . (8.47)

The proof of (8.46) is given in the box below.

Proof We start by writing

T ij = ∂k(T ikyj)− (∂kT
ik)yj = ∂k(T ikyj) + ∂0T

0iyj , (8.48)

where we used ∂µT
µν = 0 in the second equality. Next, we consider

T 0(iyj) =
1

2
∂k(T 0kyiyj)− 1

2
(∂kT

0k)yiyj =
1

2
∂k(T 0kyiyj) +

1

2
∂0T

00yiyj . (8.49)
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In the integral over Σ, we can drop the terms ∂k(. . .) that are total spatial derivatives. We then get∫
Σ

d3y T ij(tr,y) =
1

2
∂2

0

∫
Σ

d3y T 00(tr,y) yiyj =
1

2

d2Iij
dt2

(tr) , (8.50)

which is the claimed result.

Equation (8.46) describes how gravitational waves are created by the time-dependent quadrupole

moment of the matter source. Recall that electromagnetic waves are produced by a time-

dependent dipole (created by the separation of positive and negative charges). Dipole radiation

doesn’t exist in gravity, because there are no negative gravitational charges.

8.4 September 14, 2015

A new era of science was initiated on September 14, 2015. This was the day when the first

gravitational waves were observed by LIGO. The historic image of the first gravitational wave

event is shown in Fig. 42.

Figure 42. Historic image of the signal from the first gravitational wave event detected on 14/09/2015.
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These gravitational waves were created billions of years ago by the merger of two black holes

in a distant galaxy. The initial masses of the two black holes were about 30 and 35 Solar masses.

The mass of the final black hole after the merger was 62 Solar masses. The difference in the

masses before and after the merger, 30 + 35− 62 = 3 Solar masses was released as the energy of

gravitational waves. In fact, for a tiny fraction of a second, these colliding black holes released

more energy than all the stars in all the galaxies in the visible universe put together.

Since this remarkable event on September 14, 2015, many more black hole mergers have

been detected. All observed events are in perfect agreement with the predictions of GR. These

detections mark the beginning of multi-messenger astronomy and the birth of “precision gravity.”

This is a good place to end this course.
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A Elements of Special Relativity

Special relativity is based on a simple, yet profound, observation: the speed of light is the same

in all inertial reference frames and does not depend on the motion of the observer. From this

fact, Einstein deduced far-reaching consequences about the nature of space and time. In this

appendix, I will provide a brief reminder of the basic concepts of special relativity.

A.1 Lorentz Transformations

In order for the speed of light to be the same in all inertial reference frames, the coordinates in

these frames must be related by a Lorentz transformation. Consider two inertial frames S and S′.
From the point of view of S, the frame S′ is moving with a velocity v in the x-direction. The

coordinates in S′ are then related to those in S by the following Lorentz transformation:

t′ = γ(t− vx/c2) ,

x′ = γ(x− vt) ,
y′ = y ,

z′ = z ,

(A.1)

where γ ≡ 1/
√

1− v2/c2 is the Lorentz factor. It is easy to confirm that the speed of light is the

same in both frames. Consider, for example, light traveling in the x-direction. In the frame S,

the light ray obeys x = ct. In S′, we then get x′ = γ(x− vt) = γ(ct− vx/c) = ct′.

Note that time and space have been mixed by the Lorentz transformation. An analog of

this occurs for spatial rotations. Consider three-dimensional Euclidean space with coordinates

x = (x, y, z) as defined in a frame S. A second frame S′ may have coordinates x′ = (x′, y′, z′),
where x′ = Rx for some rotation matrix R. The two coordinate systems share the same origin

but are rotated with respect to each other. The coordinates in S′ have become a mixture of

the coordinates in S. Similarly, Lorentz transformations can be thought of as rotations between

time and space. This mixing of space and time has profound implications: 1) Events that are

simultaneous in one frame are not simultaneous in another, 2) Moving clocks run slow (“time

dilation”), and 3) Moving rods are shortened (“length contraction”).

A.2 Spacetime and Four-Vectors

Although a rotation changes the components of the vector ∆x connecting two points in space, it

will not change the distance |∆x| between the points. In other words, |∆x|2 = ∆x2 + ∆y2 + ∆z2

is an invariant. Similarly, although time and space are relative, all observers will agree on the

spacetime interval

∆s2 = −c2∆t2 + ∆x2 + ∆y2 + ∆z2 . (A.2)
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We can demonstrate this explicitly for the specific transformation in (A.1). Ignoring ∆y and ∆z,

which just come along for the ride, the spacetime interval evaluated in the frame S′ is

∆s2 = −c2(∆t′)2 + (∆x′)2

= −γ2 (c∆t− v∆x/c)2 + γ2(∆x− v∆t)2

= −γ2(c2 − v2)(∆t)2 + γ2
(
1− v2/c2

)
(∆x)2

= −c2∆t2 + ∆x2 .

(A.3)

In general relativity, we will encounter the spacetime interval between points that are infinitesi-

mally close to each other. We then write the interval as

ds2 = −c2dt2 + dx2 + dy2 + dz2 , (A.4)

and call it the line element.

Note that ∆s2 is not positive definite. Two events that are timelike separated have ∆s2 <

0; they are closer in space than in time. In contrast, events with ∆s2 > 0 are said to be

spacelike separated. Finally, two events with ∆s2 = 0 are lightlike separated. These events can

be connected by a light ray. The set of all points that are lightlike separated from a point p

define its lightcone. Points that are timelike separated from p lie inside this lightcone. Spacelike

separated points are outside the lightcone. To respect causality a particle must travel on a

timelike path through spacetime. We call this path the particle’s worldline.

Given the intimate connection between time and space in relativity it makes sense to combine

them into a four-vector

xµ = (ct, x, y, z) , (A.5)

where the Greek index µ runs from 0 to 3, and the zeroth component is time. To make the

symmetry between time and space even more manifest, I will from now on use units where the

speed of light is unity, c ≡ 1. The line element (A.4) can then be written as

ds2 = ηµνdx
µdxν , (A.6)

where ηµν is the Minkowski metric

ηµν =


−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 . (A.7)

In (A.6), we used Einstein’s summation convention which declares repeated indices to be summed

over.

Under a Lorentz transformation the spacetime four-vector transforms as

X ′µ = ΛµνX
ν , (A.8)
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where Λµν is a 4× 4 matrix. For the specific transformation in (A.1), we have

Λµν =


γ −γv 0 0

−γv γ 0 0

0 0 1 0

0 0 0 1

 . (A.9)

In general, the invariance of the line element (A.6) requires that

ηρσ = ΛµρΛ
ν
σηµν , (A.10)

and the set of matrices satisfying this constraint define the Lorentz group.

The metric can also be used to lower the index of the vector xµ to produce the component of

the dual co-vector

xµ = ηµνx
ν = (−t, x, y, z) . (A.11)

Sometimes xµ is called a covariant vector, while xµ is a contravariant vector. To raise an index,

we need the inverse metric ηµν , defined by ηµρηρν = δµν , so that xµ = ηµνxν . An important

co-vector is the differential operator

∂µ ≡
∂

∂xµ
= (∂t, ∂x, ∂y, ∂z) , (A.12)

which appears frequently in relativistic equations of motion.

The inner product of a vector and a co-vector is

xµxµ = −t2 + x · x . (A.13)

In order for this inner product to be Lorentz invariant, the components of a co-vector must

transform as

X ′µ = (Λ−1)νµXν , (A.14)

where (Λ−1)νµ is the inverse of Λµν .

A natural generalization of vectors and co-vectors are tensors. A tensor of rank (m,n) has

m contravariant (upper) indices and n covariant (lower) indices:

Tµ1...µmν1...µn . (A.15)

The transformation of such a tensor is what you would guess from its indices

(T ′)µ1...µν1...µn = Λµ1σ1 · · · (Λ−1)ρ1ν1 · · ·T σ1...σmρ1...ρn . (A.16)

The most complicated tensors one encounters in special relativity are the electromagnetic field

strength Fµν and the energy-momentum tensor Tµν (see below). In general relativity, the most

complicated tensor is the Riemann tensor Rµνρσ.

Why are tensors important? If a physical law can be written in the form of spacetime tensors,

it means that it holds in any reference frame. In other words, if the law is true in one inertial

frame, it will be true in any Lorentz-transformed frame. Newton’s laws cannot be written in the

form of spacetime tensors and therefore are not consistent with relativity. Maxwell’s equations,

on the other hand, can be written in tensorial form and therefore are consistent with relativity.

This is not an accident. Einstein was motivated by Maxwell’s equations because they imply that

the speed of light should be independent of the motion of the observer.
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A.3 Relativistic Kinematics

Consider a massive particle moving through spacetime. The trajectory of the particle is specified

by the function xµ(λ), where λ is a parameter labelling the points along the particle’s worldline.

What should we choose for the parameter λ? One option is to use the time experienced by

the particle called the proper time. Going to the rest frame of the particle, where its spatial

coordinates are constants, we have

dτ2 = −ds2 . (A.17)

Note that dτ2 > 0 for a timelike trajectory. Just like the interval ds2, the proper time is something

that all inertial observers will agree on. In a general frame, the spatial position x of the particle

will be a function of the time t. In terms of these coordinates, the differential of the proper time

is

dτ =
√
dt2 − dx2 = dt

√
1−

(
dx

dt

)2

= dt
√

1− v2 =
dt

γ
. (A.18)

Integrating this gives the proper time along the trajectory in terms of the background coordinates.

Given the function xµ(τ), we can define the four-velocity of the particle

Uµ ≡ dxµ

dτ
. (A.19)

Since τ is a Lorentz invariant, Uµ transforms in the same way as xµ and is therefore also a

four-vector. In contrast, dxµ/dt is not a four-vector, since both xµ and t change under a Lorentz

transformation. Since Uµ is a four-vector, the inner product UµUµ is a Lorentz invariant. In

fact, it is easy to show that UµUµ = −1. Finally, it follows from (A.18) that the four-velocity in

a general frame is

Uµ = γ(1,v) , (A.20)

while in the rest frame of the particle it becomes Uµ = (1, 0, 0, 0).

Another important quantity is the four-momentum

Pµ = mUµ , (A.21)

where m is the mass of the particle. Given (A.20), we have Pµ = γm(1,v). The spatial part gives

of the relativistic generalization of the three-momentum, p = γmv, while the time component is

the energy of the particle E = γm. In the rest frame of the particle, we have Pµ = (mc, 0, 0, 0)

and hence

PµPµ = −m2c2 . (A.22)

Since the inner product is an invariant, it takes the same value in any frame. Using Pµ = (E/c, pi),

we also have

PµPµ = −E2/c2 + p2 , (A.23)

so that (A.22) implies

E2 = p2c2 +m2c4 . (A.24)

This is the generalization of the famous E = mc2 to include kinetic energy.
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So far, we have only described massive particles. What about massless particles? Massless

particles travel on lightlike trajectories with ds2 = 0. The proper time therefore vanishes and

our analysis above brakes down. However, the result in (A.24) still holds in the massless limit

where it gives

E =
√

p2 +m2 → |p| . (A.25)

The four-momentum therefore is Pµ = (|p|,p), with PµPµ = 0.

A.4 Relativistic Dynamics

We are often interested not in the motion of individual particles, but in the coarse-grained

dynamics of a large collection of particles. In other words, instead of tracking the positions of

each particle, we want to follow the evolution of average quantities, such as the number density

n, energy density ρ and pressure P . We will now discuss how these quantities are described in

relativity.

Number density

Consider a box of volume V centered around a position x. The box contains N particles, so the

density of particles is n = N/V . Taking the box size to be small, we can think of this as the

local density at the point x. Clearly, this number density is not a relativistic invariant. To see

this, consider a frame S′ in which the box is moving with a velocity v. The dimension of the

box will be Lorentz contracted along the direct of travel, so its volume now is V ′ = V/γ. Since

the number of particles inside the box stays the same, the number density in this frame will be

n′ = γn. Using (A.20), we may also write this as

n′ = nU0 , (A.26)

where n is the number density in the rest frame of the box and U0 is the time component of

the four-velocity of the box. This suggests that the number density is the time component of a

four-vector called the number current:

Nµ ≡ nUµ . (A.27)

This four-vector has components Nµ = (n′,n′), where we reserve n (without the prime) for the

density in the rest frame. The spatial part is the number current density, n′ = γnv. Given an

area dA, the inner product n′ · dA describes the number of particles flowing across the area per

unit time.

Since particles are neither created, nor destroyed, the number density only changes if particles

flow in or out of the volume. Locally, this is described by the following continuity equation

∂n′

∂t
= −∇ · n̂′ . (A.28)

Using the number current four-vector, this equation can be written as

∂µN
µ = 0 , (A.29)

where ∂µ was defined in (A.12).
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Energy-momentum tensor

Of particular importance in general relativity are the densities of energy and momentum, since

these are the sources for the curvature of the spacetime.

As we have seen above, energy and momentum are closely related as the time and space

components of the momentum four-vector Pµ. We would now like to write the energy and

momentum densities as the time components of four-vector currents. We then combine these

currents into a single object, T 0µ, where T 00 is the density of the energy and T 0i is the density of

the momentum (in the direction xi). As you may guess from the double index, we are building

a new rank-2 tensor Tµν called the energy-momentum tensor. The second index tells us

whether we are talking about the energy (ν = 0) or the momentum (ν = i). The first index tells

us whether we are talking about the density (µ = 0) or the flow (µ = i). Hence, we have

T 00 = density of energy , T i0 = flow of energy

T 0i = density of momentum , T ji = flow of momentum

Note that each component of the momentum has its own flux. For example, T 12 is the flow of the

x2-momentum along the x1-direction. The flow of the momentum density creates a stress (= force

per unit area) and T ij is therefore often called the stress tensor. Its diagonal components are

the pressure and the off-diagonal components are the anisotropic stress. Integrating the densities

over space gives the total energy and momentum, or P ν =
∫

d3xT 0ν . By analogy with (A.29),

we write the following conservation equation for the energy-momentum tensor

∂µT
µν = 0 . (A.30)

These are four equations: one for the energy density (ν = 0) and three for the components of the

momentum density (ν = i).

As a simple example, let us return to our particles in the box. Ignoring the kinetic energies

of the individual particles, the total energy density in the rest frame is ρ = mn. In the boosted

frame, the energy and the number density each increase by a factor of γ, so that ρ′ = γ2ρ.

Similarly, the momentum density becomes πi = γ2ρvi. Using (A.20), we may also write this as

ρ′ = ρU0U0 , (A.31)

πi = ρU0U i , (A.32)

where ρ is the energy density in the rest frame. A natural guess for the energy-momentum tensor

of the particles inside the box therefore is

Tµν = ρUµUν , (A.33)

where T 0ν = (ρ′, πi).

If we include the random motion of the particles, the energy-momentum gets an extra contri-

bution from the pressure P created by this motion. Since the pressure is isotropy, the energy-
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momentum tensor in the rest frame must be diagonal:

Tµν =


ρ 0 0 0

0 P 0 0

0 0 P 0

0 0 0 P

 . (A.34)

In a general frame, this becomes

Tµν = (ρ+ P )UµUν + Pηµν . (A.35)

This is the energy-momentum tensor of a perfect fluid. It plays an important role in cosmology,

since on large scales all matter can be modeled by perfect fluids.

Relativistic field theory

In modern physics, fields are fundamental and particles are a derived concept arising as exci-

tations of fields. The Standard Model of particle physics is a relativistic quantum field theory.

Even in classical physics, fields—like the gravitational field and the electromagnetic field—play an

important role. In the following, I will briefly describe the dynamics of fields in special relativity.

Consider a field φa(t,x), where a is a discrete label that characterizes the type of field—

e.g. the electromagnetic four-vector field Aµ has four components, so a takes on four values. The

Lagrangian of the field is a functional of the field φa and its spacetime derivative ∂µφa:

L =

∫
d3xL(φa, ∂µφa) , (A.36)

where L is the “Lagrangian density” (but we will follow standard practice and often simply call

it the Lagrangian). The action is the integral of the Lagrangian between two times t1 and t2:

S =

∫ t2

t1

dt

∫
d3xL ≡

∫
d4xL . (A.37)

The evolution of the field configuration φa(t,x) between t1 and t2 follows from the principle of

least action. Consider an infinitesimal change of the field, φa → φa + δφa. The corresponding

variation of the action is

δS ≡ S[φ+ δφ]− S[φ]

=

∫
d4x

{
∂L
∂φa

δφa +
∂L

∂(∂µφa)
δ(∂µφa)

}
(A.38)

=

∫
d4x

{[
∂L
∂φa
− ∂µ

(
∂L

∂(∂µφa)

)]
δφa + ∂µ

(
∂L

∂(∂µφa)
δφa

)}
, (A.39)

where the second term in (A.38) has been integrated by parts. The last term in (A.39) is a total

derivative and vanishes for any variation δφa that decays at spatial infinity and which obeys

δφa(t1,x) = δφa(t2,x) = 0. Setting δS = 0 then leads to the Euler-Lagrange equation

∂µ

(
∂L

∂(∂µφa)

)
− ∂L
∂φa

= 0 . (A.40)
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Note that this is one equation for each component of the field.

In cosmology, we will often deal with real scalar fields φ(t,x). Such fields have a “kinetic

energy” (density) 1
2 φ̇

2, a “gradient energy” 1
2(∇φ)2 and a “potential energy” V (φ). The kinetic

and gradient energies can be combined into a Lorentz-invariant “kinetic term”

− 1

2
ηµν∂µφ∂νφ =

1

2
φ̇2 − 1

2
(∇φ)2 , (A.41)

which is often abbreviated as 1
2(∂φ)2. The full Lagrangian density takes the form of “kinetic

minus potential energy”:

L = −1

2
ηµν∂µφ∂νφ− V (φ) , (A.42)

Substituting

∂L
∂(∂µφ)

= −ηµν∂µφ and
∂L
∂φ

= −dV
dφ

(A.43)

into the Euler-Lagrange equation (A.40), we obtain the Klein-Gordon equation

�φ = −dV
dφ

, (A.44)

where � ≡ −ηµν∂µ∂ν is the d’Alembertian operator.
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B More Differential Geometry

B.1 Tensor Densities

B.2 Differential Forms

B.3 Integration on Manifolds

B.4 Maps of Manifolds

B.5 Lie Derivatives
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