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Chapter 1.
GRAVITY IS GEOMETRY

1.1 What’s Wrong With Newton?

Why do we need a better theory of gravity than Newton’s? At an observational level, because
Newtonian gravity fails at a certain level of accuracy; for example, for predicting the orbit of
Mercury. More conceptually, Newtonian gravity is in conflict with the fundamental principle

of special relativity that no signal should travel faster than light. We will start there.

Consider a particle in a gravitational field:

—"

—mV o

The field satisfies the Poisson equation:

/
V20 = drGp| =  O(x,1) = —G/d%'M.

[x — x|

Problem: ®(x,t) reacts instantaneously to changes in p(x,t).

A similar problem arises in electrostatics:

V=L o gk =

e 1 /d3x/pe(xlat) )
€0 A7eg |x — x/|

Solution: Maxwell’s equations

Al = (§b7 A)
T =T e P = (p.d.)
F,=0,A,—-0,A,

Goal: Find the analog of Maxwell’s equations for gravity.



1.2 The Equivalence Principle
Why do objects with different masses fall at the same rate?

|

a] = a9
Answer: mass cancels in Newton’s law. BUT: we should really write
ma =mg mra = mgag§g
T T
Experimentally: e = 14+10713, Why? inertial mass  gravitational mass
ma (like charge)

Weak Equivalence Principle (WEP):

e m; =mg = Gravity is universal: X = g(x,1)

= A uniform gravitational field is indistinguishable from
uniform acceleration.

l M m M m
1 1
Earth Empty space

= A freely falling observer will not feel a gravitational field.
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Einstein Equivalence Principle (EEP):

No experiment can distinguish a uniform gravitational field from uniform ac-
celeration.

= Locally, you can always find coordinates so that there is no acceleration.
= In a small region, the laws of physics reduce to those of special relativity.

Tidal forces:

A non-uniform gravitational field cannot be removed by going to an accelerat-
ing frame:

Y 2 s

Freely falling frame

Earth

Tidal forces are the real effects of gravity.



1.3 Gravity as Curved Spacetime

Consider Alice and Bob in a gravitational field:

z

Bob?
gJ
Aliceg

Alice shines light with wavelength Agq = Aq.
What is the wavelength Ap observed by Bob?

By the EP, this situation should be the same as:

Bobg

|

The light reaches Bob after a time At ~ h/c.
Bob’s velocity has increased by Av = gAt = gh/c.

Aliceg

Due to the Doppler effect, the received light is “redshifted”
AN Av _ gh
N ¢ 2

By the EP, the same effect must occur in a gravitational field:

Ar _gh AP
N 2 2|

= Gravitational redshift: observed by Pound and Rebka in 1960.
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Since T'= \/c, we can also think of this as time dilation:

dp — P
TB:<1—|——B 5 A>TA -
c

= Time runs slower in a region of stronger gravity (smaller ®).

Why does this imply curved spacetime?

Alice now sends out two pulses of light, separated by At 4.
Bob receives the signals spaced out by Atp.

t

A

Atp

Ata

A 4
N

In a static spacetime, the worldlines must have identical shapes and hence
Aty = Atp,

in contradiction with the time dilation required by the EP.

Resolution: spacetime is curved.



In GR, the spacetime corresponding to a weak gravitational field is

ds? = — (1 n %> Edt? + (1 - QCD(X)) dx?

c? c?

where ® < 2.

The proper time measured by Alice then is

[ 20 o
ATs =/ —goo(x) At = 1—1——2AAt% (14——;) At .
c c

Similarly, the proper time measured by Bob is
P
c

Combining these expressions, we find

) 4\ ! bp— P
ATB:(l—l-—QB) <1+—;4> ATA% <1+B—2A)ATA.
C C C

= The time dilation has been explained by the geometry of spacetime.




Chapter 2.
SOME DIFFERENTIAL GEOMETRY

Since gravity is a manifestation of the geometry of spacetime, we will start this course by
developing the necessary mathematical background to describe curved spaces and, ultimately,
curved spacetime. Our treatment won’t be rigorous, meaning that we will not prove anything
the way mathematicians would. The purpose of this chapter is to understand what kind of

objects can live on curved spaces and the relationships between them.

2.1 Manifolds and Coordinates

An n-dimensional manifold M is a continuous space that looks locally like
R™. The different patches of the manifold can be smoothly sewn together.

4

Coordinates are maps between an open set of points U on M and points
on R™:
¢: Ur—R".

The map ¢ is also called a (coordinate) chart.

For every point p € U, we have ¢(p) = (z'(p),...,2"(p)), or

=1,...,n Euclidean
o =) {"

uw=0,...,n—1 Lorentzian

The inverse map ¢ '(z*(p)) gives you the point p on M.



In general, we need more than one chart to cover the entire manifold:

)
yl

¢o 0 7

e The collection of all charts ¢, is called an atlas.

e All charts must be compatible in the regions of overlap:

dro¢r Y ()

i) . are smooth functions.
propy = M(y)

The transition functions

Examples

e S!: The circle is defined as a curve on R? with
(x,y) = (cos@,sinf) .

You usually take 6 € [0, 27), but this is not an open set, which causes problems
if we want to differentiate at 6 = 0.



Define two charts to cover S*:

q1 q2

- -

o— —0 o-
0

3 0

The transition function is
01 if 6, € (0, 7T)

— 6a(67"(61)) =
02 = d2(¢y (01)) {91_277 if 0, € (m,2m)

which is smooth in the regions of overlap (upper and lower semi-circles).

e S2: Similarly, we need two charts to cover a sphere:

o1 < b2 z

@




2.2 Functions, Curves and Vectors

Next, we define additional structures on manifolds.

A function is a map
f: M—R,

which assigns a real number to each point on the manifold. Introducing a
coordinate chart ¢ in a region U € M, the composite map f o ¢! gives
f ("), which describes the function in terms of coordinates on ¢(U) € R".

foo™

]RTL

4

A curve is defined by the map
v I — M,

where [ is an open interval on R. This labels each point along the curve
v by a parameter A € I. The composite map ¢ o v defines z#(\), which
describes the curve in terms of coordinates on R".
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Defining vectors is a bit more subtle:

e Vectors are not arrows stretching between points.
e Instead, a vector is an object associated to a single point.

A better definition of vectors is in terms of tangent vectors along curves:

fon R

The function along the curve is
fovy:I—=R

and its rate of change is

d d o s
5(f ov(A)) = i\ (7(A)) <« directional derivative

11



The tangent vector to the curve v at a point p is

Since the function f is arbitrary, we can even write V,, = d/d\ and think of
the vector as a linear map from the space of smooth functions on M to R.

This definition satisfies:
1) Linear: Vj(af + bg) = aV,(f) + bV,(g)
2) Leibniz: V,(fg) = Vp(f)g + fV,(9)

= The tangent vectors form a vector space T,(M) (tangent space).

Proof. Consider

It V,,U, € T,(M), then W, = aV}, + bU, € T,(M).
W, is a linear map and satisfies the Leibniz rule:

Wp(fg) = (aVy, +0U,)(f9) = a[Vi(f)g + fVa(9)l + 0[Up(f)g + fU(9)]
= [aVo(f) +0Up(f)] g + [ [aVi(g) + bU,(9)]

= Wp(f)g+ fWalg) .

The tangent vectors therefore span a vector space.
T,(M) is only defined at the point p. At a different point ¢, we have T,(M).
It make no sense to add vectors at different points (different tangent spaces).

A collection of vectors at each point on the manifold defines a vector field.

The set of all tangent spaces of the manifold is the tangent bundle, T'(M).

12



Let us introduce a coordinate chart ¢.

We then have if p
= ﬁ(f °7)

= (o ewon)

V(f)

SN

and hence

_dzt Of

V(f)—ﬁ@ :

Since this holds for any f, we have

d dxt O
V== ow

T 1

components coordinate basis

dxt 0

V=2
x| T G

dy

. . !
Under a coordinate transformation, x* — x*, we have

0 oxt 0 ox*

oxt  Oxt 9xr  Oxr M

8u — 8u/ =

Since the vector V' = V*#9, should remain unchanged, we get

, Ozt

VIO, = VI Oy = VI 550,
and hence
/ axul
VF = —VH|.
OxH

13



2.3 Co-Vectors and Tensors

Having defined vectors on a manifold, we can now introduce the associated co-vectors (also
called dual vectors or one-forms or “vectors with a downstairs index”). Given an understanding

of vectors and co-vectors the generalization to tensors will be straightforward.

Examples of Co-Vectors:

1) Linear algebra

e vector: V = (2) eV

e co-vector: V1 = (V1 V2) e V*

2
e inner product: UTV = (U1 UQ) <¥1) = ZUZVZ' eR
2 i—1

2) Special relativity
e vector: V#

e co-vector: V, =1, V"
3

e inner product: U -V = Z UV’ eR
=0

3) Quantum mechanics
e vector: [¢)) € H

e co-vector: (¢| € H*
e inner product: (¢|y) € C

Definition:

A co-vector is a linear map from a vector space V to R:
w:V—R, sothat w(V)eR.

The co-vectors w live in the dual vector space, V*.

14



We are interested in the dual of the tangent space T),(M ), which we call Ty (M ).

Let f : M — R be a smooth function. We define the co-vector df by

Af(V)=V(f), with VeT,(M).

Pick V' = ¢(,) = 0, (coordinate basis vector) and [ = 2/ (coordinate function):

I
dz"(0,) = 0, (") = Or” _ o

- Oxv v

We identify dz/ as the dual of the coordinate basis 0,,.
The dual of a general basis vector satisfies

8</‘1')(€(,,)) = 5#

Any dual vector can be written as
w=weW = wle)) = wye(”)(e(ﬂ))

14
= wyéu

= Wy, .
The action of a co-vector on a general vector then is

w(V) =w(Ve,)
= w(e(u))V“
=w, V", as expected.
of

Ex: Show that df = mdaz“.
x

. / .
Under a change of coordinates, # — x*, the basis co-vectors transform as

Oxr

li
dzt = —dat,
oz
and the components as
ozt u : :
Wy = Wu}u ,  so that w = w,dz" stays invariant.
x

15



Definition:

A tensor of rank (m,n) is a multi-linear map

T: T;(M)><...><T;(M)J><\TP(M)><...><Tp(M) — R.

7

(m times) (n times)

In other words, given m co-vectors and n vectors, a tensor of type (m,n)

produces a real number, T'(w1, ..., W, Vi,..., V,).

Acting on the basis (co)-vectors returns the components of the tensor
THebm = T(e(’“), . elrm) Clu)s - - -5 €()) -

. i
Under a change of coordinates, x# — x*, these components transform as

oy, OxM OxFm O or’r
Mmoo, — e [
Metn T Gy Oxhm Q1 oxVn

Operations on tensors:

o Tensor product: (S @ T)H-oPr=rr, g g, = Sty L TP o

e Contraction: S"°, =TV , .

1

° (Antz’-)symmetrize: S,uu = §(T,uy + Tu,u) = T(,ul/) )

1
A,uz/ = §(T‘LW - Ty ) = T[

pv] -
This generalizes to higher-rank tensors. For example:

T(w/)pg — %(T/WPU + TP,

L 1
T ol = 5(T"vpr = Topw)

T'u(upa) = (Tuupa + T'upua =+ Tupm/ + T'uapz/ + Tucrz/p + TMVO’p) )

X =R =

T'u[ypa} = (Tﬂupa - T'upua + Tﬂpau - Tuapy + Tum/p - Tuuap) .

16



2.4 The Metric Tensor

+ R3
q=~(1) : .
The distance between p and ¢ is
1

dx dx

)= [ v/

) 0 dX dA

T

p=~(0) . inner product

To define a distance on a curved manifold, we need to generalize the inner
product between two vectors.

An inner product maps a pair of vectors to a number. At a point p, we

write this map as
g: Ty(M)xT,(M)—R.

To make this (0, 2) tensor the metric tensor, we require:
1) It is symmetric: g(V,U) = g(U, V).

2) It is non-degenerate: If g(U, V)|, = 0, for all U, € T,(M), then V,, = 0.

In a coordinate basis, we have
9 = guwdr" ®@da",
which is often abbreviated as ds? = g datda”.
1) Symmetric: g, = guy

2) Non-degenerate: det(g,,) # 0

This allow us to define the inverse metric, g", via g" g,, = O~.

17



Metric as a duality map:
A metric provides a map between vectors and co-vectors:

VE s V= gu VY

wy — w'=g"w,

Distances on a manifold:

The length of a curve is

Ap.q) = / VAl

where V' is the tangent vector and

g(V,;V) >0 = spacelike
g(V,V)=0 = null
gV,V) <0 = timelike

Massive particles travel on timelike trajectories.

In that case, the proper time is d7? = —guwdxtdz” > 0.
Integrating this along the curve gives

1
dxt dxv
T = d)\\/—g y—— .
/0 BN AN

Volumes and integration:

(later in the course)
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Chapter 3.
A FIRST LOOK AT GEODESICS

General relativity contains two key ideas: 1) “spacetime curvature tells matter how to move”
(equivalence principle) and 2) “matter tells spacetime how to curve” (Einstein equations). In

this chapter, we will develop the first idea a bit further.

3.1 Action of a Point Particle

The action of a relativistic point particle is

S:—m/dT, (for c=1)
where 7 is proper time.

Check 1: In Minkowski, we have

dt

dx\ 2
dr = \/—ds? = \/di? — dx® = dt( |1 — (—X> — dt\/1— 02,
and the action becomes

1 .
— —m/dt V1—2 2= (—m+§7n02+...>_

Check 2: Using the weak field metric
ds® = —(1 + 2®) dt* + (1 — 2®) dx>

we get

S = —m/dt\/(1+2<1>) — (1 —20)0?2

1 .
~ /dt (—m + —mv? —md + - ) )
’ 1

potential
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3.2 Geodesic Equation

Consider a curve z#(\) in a general spacetime, with metric g, (¢, x):

A geodesic is the preferred curve for which the action is an extremum.
This curve satisfies the geodesic equation

Azt
W+ B dr dr |’

where I'} ; is the Christoffel symbol:

g (aagﬁ)\ + J5gar — a)\gab’) :

Proof: The action is

1 dxt dxv
St (A :—m/ d)\\/—gy——.
[ ( )] 0 A 1 d)\ d)\/

~"

G
Consider # — z# + d2/', so that 0.5 = S[a# + ox/'] — S[zH].
We get 65 = 0, for all dx#, if
d (9G\ oG Euler-Lagrange . d (0L 0L
d\ \oir )  Oxr|’ equation Cdt\9q) Oq

where i = dx# /d\. The relevant derivatives are

oG _ 1w

gir G

oG 1 o
o~ "GO

20



Using

d\

the EL equation can be written as

a (gwﬁ> _lg g detdnt

dr dr DR
and hence (
dQ.CL’V N 0 dxr® dx? 10 dr® (]Tﬁ .
Wy ) Guy———F — —0,0q03————— = U.
I g2 I g e~ 29I

Repla’Cing a(},g/ll/ by %(a&g/w + an/(,(l)) we get

d’z” 1 dz® dz”
G5 dr2 +5 (aaguﬁ +aﬁgua - augaﬂ) dr dr =0,
and contracting the whole expression with g?# gives
d’z7 1 dz® dz®
dr2 + 29 (aagliﬁ + aﬂgua - 8uga6) - dT =0.
:VO-
=17

Relabelling indices, we get

(m)Q .
— | =—gpittt" =G = —=0G = —=-——=

A2t B dx® dz”
_|_ -
dr? B dr dr

=0[, with T

9" (9agsr + 039ar — OGas) | »

as required.

21



A simpler Lagrangian:

The same geodesic equation can also be derived from a simpler “Lagrangian”

dxt dx”

— 2:_ -
L=6= 9w x|

Starting from the Lagrangian, not the equation of motion, will allow us to

identify conserved quantities more easily.
e If £ does not depend explicitly on A, so that 0L/0X = 0, then

de _ 0L  det OL | di* OL
d\ 0N A\ dzr T dX dir

g (0L oL . 9L _d (0L
T \oir ) T AN oan & oxr  dx \ gin

This is the conserved “Hamiltonian”

— __,U:
H=L o 0 null

oL . da’dx” — { —1 timelike (A = 1)
Dt I =N A

e If g,, does not depend on x* (ignorable coordinate), then 0,,g,, = 0.

The EL equation then implies

i oL\ oL
d\ \ 9z ) Qxo

i -9 ﬁ — _8 @ﬁ =0 = ﬁ — const
N s N A D S Jour" N T '

“momentum”

22



3.3 Newtonian Limit

1) particles are moving slowly,
2) the gravitational field is weak,
3) the field is also static.

7

dt
< —, so that

1) implies that
) implies tha <o
Azt dt\*

dr? dr

2) implies that
Gy = Mpv + Py
g =" =,
where |h,,| < 1.

To first order in hy,, we have

1
I = 59’”(809% + Jogor — Or9oo)
1

= —577”j(9jh00 :

e The = 0 component of (*) then reads

—d2t =0 = —= t

= = const.
dr? dr

e The 1 =i component becomes

2xt 1 dt\*
= ~hg [ — ) .
dr? 2a 00 <d7‘>

Dividing by (dt/dr)* and defining hgy = —2®, we get

d2at

=0,

23



3.4 Geodesics on Schwarzschild

The metric around a spherically symmetric star of mass M is

-1
d32:— (1_2GM> dt2+ (1_2GM> d7’2+7”2(d92—|—Sin2(9d¢2) .

r r

Let us look at the geodesics in this spacetime.

The Lagrangian £ = —g,, 2" is

2GM) . 2GM\ " . .
Ez(l— G >t2—<1— G ) 72— r20% — r?sin? 02 .

r T

The Euler-Lagrange equation is

4 fory _oc
d\ \oir ) Oxr’

Since L is independent of £ and ¢, we have two conserved quantities:

d (oL =0 = _ 1oL 1—2GM t (energy)
a\oi )~ “20i r &7
d 1 .
i\ <g—g> = = L= _ég_ﬁ = r’sin?f0 ¢ (angular momentum)
The EL equation for 6 is
d (o 9 . +9 . cosf L? r .
ﬁ<r 9>:r sinfcosf ¢~ = stingeﬁ—2;«9.
We can pick # = 7/2 (6 = 0): equatorial plane.
The constraint € = —g,,2"%" = const then implies
2GM ) . 2GM\ . imeli
e (1- G 2 (1 G Ry R +1 timelike
r r 0 null
2GM\ ! 2GM\ ., I
(e
r T T

which we can write as

2GM\ [ L?
—E2+¢2+<1— G )( —|—e>:0.

r r?
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= Particle in a potential:

where £ = E*/2 and

1) Newtonian potential

2) Centrifugal potential
3) GR correction

Te,— Tc,+
07 T T | | [ 1 |
0.6 - (\ : |
1 1
S | | &
=~ | U
0.5 - : : _
1 1
1 1
1 1
0.4 : | | | | : |
0 5 10 15 20 25 30
r

e Massless particles (e = 0): [for GM = 1]

Tc

1_
=
10
~> 0F
~,
=
S L
)
0
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3.5 Circular Orbits

The particle can move in a circular orbit » = r. when dV/dr = 0.
Maxima (minima) are unstable (stable) orbits.

e Massless particles (e = 0):

L2 L*GM dv. L’ 3L)GM

- Yo = 0
2r2 rs dr rs ri

Vi(r)=

= |r.=3GM| (photon sphere).

Note: there are no circular orbits for massless particles in Newtonian gravity.

The evolution depends on how £ compares to Vip.x = V(7):

o For £ < Vjax, light emitted at r < r. cannot escape to infinity, while light coming from
r > r. will bounce off the angular momentum barrier and return to infinity.

o For £ > Vjax, the energy is greater than the angular momentum barrier, so that light
emitted from r < r, can escape, while light coming from r > r. can reach r = 0.

e Massive particles (e = 1):

1 GM L* L[’GM v GM L[* 3L°GM
Vir)==— + — = —— =0

N
2 r or2 rs dr r2 rs ri

=  GMr?— L*r,+3GML* =0

L? £+ /L' — 12(GM)2L?
2GM

= Te+ —

100
50

Te, 4

10
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For L > \/12G M, stable (unstable) orbit at r. . (r._).

For L = +/12G'M, the two solutions merge into is a single orbit at

r.=6GM| (ISCO).

For L < +/12G M, there is no stable circular orbit.

3.6 Precession of Mercury

GR explains the precession of the perihelion of Mercury:

Mercury’s orbit

To show this, we have to derive 7(¢).
1 (dr {F1 GM , L LI*GMY _ .
2 \ d\ 2 r 212 r3 -
ar\'_ (o) (ar\ L7 ()
dy) — \d\ dp) — ri\do) ’
this can be written as

dr\> r 2GM 5, 28
(%) +ﬁ_ 2 re 4 —QGMr:ﬁr.

Recall that

Using

27



2

GMr
This gives

Let u = , where u = 1 corresponds to a Newtonian circular orbit.

2 2 2 2
L 20GM 28 L

(GM)? L? (GM)?"
Differentiating with respect to ¢:

d?u 3(GM)?

Write u = ug + w1, where

d2
Wj?_ljuuozo = |ug=14ecos¢| (Newtonian)
d*uy 3(GM)*
7 PR
3(GM)?
= %(1 + e cos QS)Z
3(GM)? 1, L,
=77 [(1+§e —|—Qecos¢—|—§e cos 20| .

3(GM)? 1 1
=  |u = % [<1 + 562) + epsin ¢ — 662 coS 2¢]

/]\
only non-periodic term
(leading to precession)
Hence, we get

3(GM)?

<1

u=14+ecos¢p+aepsing, o

~ 1+ ecos[(l—a)p|.

During each orbit, the perihelion therefore advances by an angle

6m(GM)?

Ap =2ra = 72

28



An ordinary ellipse satisfies L? ~ GM (1 — €?)a and hence

_ 6nGM
(1 —edal

Ag

For Mercury, the relevant parameters are

GM,
C2

=1.48 x 10°m,
a=>579x10"m,
e = 0.2056,

which gives
APrercury = .01 X 10" radians /orbit = 0.103” /orbit .

Using Tiercury = 88 days, we also get

A¢rerenry = 43.0" /century | .

The observed precession is

APrercury = 575" /century = 532" /century + 43" /century .

T T
other planets GR

Success!!
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Chapter 4.
SPACETIME CURVATURE

So far, we have studied how particles move in a curved spacetime, but we have not yet shown
explicitly how this spacetime curvature arises. This is the subject of the next two chapters.
In this chapter, we will develop the necessary mathematical formalism to describe spacetime
curvature. In the next chapter, we will then use this to derive an equation that shows how

matter and energy source the curvature of the spacetime.

4.1 Covariant Derivative

Ordinary partial derivatives aren’t good enough.

Consider 0,\T*". This transforms as
,OTH 9z O[Oz
ozN  OxN Oz° <8x” (x))
_ (():L'U/ Ozt 0T OUL”/ 92t ™
oxN Oxv OxN 0xo 0"

/I\

non-tensorial

oNvTH

= Find a new “covariant derivative”, V,\T", that transforms like a tensor:

/ 8370 81’“/
VvTH = — V1.
A oz Oxv

Let V' be the tangent vector along a curve 7.
The covariant derivative of tensors along the curve satisfies:

1) Linearity: Vy (T 4+ S) = VyT + VS
2) Leibnizz:  Vy(T®S)=(VyT)@S+T® (VyS)

4

)
)
3) Additivity:  VyyyawT = fVyT 4+ gVyS
) Action on scalars: Vv (f) = V(f)

)

5) Action on basis vectors:  Vge, =1I";,e,, where Vj3=V,,.

I';, are called connection coefficients (or Christoffel symbols).
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Say T'=T"e, and V = V"e,. The covariant derivative of 7" is

VT = Vi (The,)
= Vy(T")e, +T"(Vye,) (using 2)
=V(T")e, +T"'Vyv.e, (using4)
= Ve, (T")e, + T'V'V,e, (using 3)
=V"(0,1")e, + T“V’Tﬁue,\ (using 5)
= V"(@,T" + T, T e, .

The components of the resulting (1, 1) tensor are

v, T =0,T"+1" T,

where we have defined (VT),* =V, T*.

Under a coordinate transformation, we have
/ / / /
V" =0,T" +T,,T¢

M ' / o
LiPy <8x T”) v, 9% e

~ oz ox? Hal o
Oxt OV ot 9%z , Oz

= —— 01" TV +1%, ,—T“
oxt Oxv + oxt QxrOx? t e o0x®

oxt gxv M OxH Ozv M JrH Oxrdxe

w A 1 v 1 2.0
_ 02l O . (8:0 oz v dzt 0%z

NG

/

oxr®

v

I T~
wa g

)

7

0
= V,T" is a tensor if

/ ’ ) /
oo Oz Oz Ox° o Oxt Oz 0¥

wol T Ot Qv x T MY O Oz Oz

= I, are not the components of a (1,2) tensor.
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What is the covariant derivative of a co-vector?
Consider f = w,T". Since V,,f = d,f, we have

Vu(w,T") = 0, (w,T")
= (Opwy))T" + wy, (0,17),

or Vu(w,TI) = (V,w)T" + w,(V,T7)
= (Vw,)T" + w, (0, T" + T, T%).
Comparing these, we get
(Vuw )TV = (Quwy — T wa) T,

2%

so that

«
vuwy — auwl/ _ 1—‘[”/&/‘(" .

This generalizes to arbitrary tensors. For example:

v,uT'aﬂ7 = a/,L,-TozB’y + F;),,/\jﬁau?/\ - r)\ T)\.'XA/ - F;\,,iT(n,/\v .

jie!

So far, we have not used the metric g,, to define V. Now we will.

The Levi-Civita connection is the unique connection that is
1) torsion free: T¢,, =T, =T}, =0

2) metric compatible: Vg, =0

Let us build the Levi-Civita connection by writing Vg, = 0 three times:

S
~—

VAQ/W = a/\gul/ - FK,,.(]m/ - Fiuguo— =0, (
ViuGox = augl/A - FZI/.QU/\ - FZA.,(]VU =0,
Vyg)\u = Ovgru — Fg)\gau - PZM.(J/\O' =0. (

(a) — (b) - (¢) gives

6)\g,uu - augu)\ - 61/9)\” + QFzyga)\ =0

—~
S
~

o
~

a 1 a
= F,ul/ - 59 A (augl/)\ + ayg/\u - 8)\g,uy)
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From flat to curved spacetime

Relativistic equations must be constructed with covariant derivatives, not par-
tial derivatives. SR to GR: 0, — V..

For example: o,F¥" =Jt = YV, F¥ =J",
o,T" =0 = V,T" =0.
/]\

coupling to gravity

4.2 Parallel Transport and (Geodesics

In Euclidean geometry, “parallel lines stay parallel.” How does this generalized to curved space?
What do “stay” and “parallel]” mean on a curved manifold? How do we even compare vectors

at different points on the manifold which live in distinct tangent spaces?

In flat spacetime, parallel transport of a vector V* along a curve x*(\) means

avr  dx
— =—0,Vt = fl ime).
o ) o,VFI =0 (flat spacetime)

This generalizes to curved spacetime, if 0 — V:

DV#  dz¥
= B i
Y = D Vv,V =0 (curved spacetime).
. dve . da’
x
A o] v = 0.
PPN =0

= ['#  determines how the components of a vector change along a curve.

A geodesic is a curve along which the tangent vector dz* /dA is parallel trans-
ported:

dzt " dz” dz

K =
v d\? VAN dA

which is the same as our old geodesic equation if we identify I'/, with the

Levi-Civita connection.
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4.3 Symmetries and Killing Vectors

The importance of symmetries in physics cannot be overstated. General relativity is no ex-
ception. We will see that the Einstein equations are rather complicated nonlinear differential

equations that can only be solved analytically in situations with a fair amount of symmetry.

Consider z# — ZF(x) as an active transformation between different points on
the manifold. Nearby points are connected by infinitesimal transformations:

ot — ' (x) = 2 + dat
=a!' -V,

The metric changes as

O0guw =V, Vi, +V,V,.

Proof Recall that

. oxP Ox?
9 () = 4 (T) = @@QM(@ ;
where 974 -
9T i gy ym X _ sp p
o o, — O,V = rie on +0,V7’.

Hence, we get

9 (Z) = (55 + 8MVP)(5£‘ + Q,VA)gp)\(ac)
= G (%) + 0,V g, () + 3VV)‘gu)\(x) )
Writing
G () = g (T +V) = g (T) + VA@/\Q/W('T) ;

we get

5guz/ = guu(f) - g,uu(j)
= VG + 0,V g + 0,V g
= V)\a)\g/w + au(vpgpl/) + az/(vAgu)\) - Vpaugpu - VA@VQ/M
= V.Vo + VV, + T8 Vo + T8 Ve = VNOugur + ugun — Orguw)
=V, V, +V,V,,

as required. [l
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For a symmetry transformation, we have

Killing’s

5guy =0 = VMVZ/ + VVV,U =0 s equation

where V*# is a Killing vector.

Finding all Killing vectors of a metric g,, can be hard.

Some useful facts:

o If 0.9, = 0, then 0,, is a Killing vector;
o [f K and Z are Killing vectors, then aK + bZ is a Killing vector;
e If K and Z are Killing vectors, then [K, Z] is a Killing vector.

Example Consider R®: ds* = dz? + dy® + dz%

Three obvious Killing vectors are X = 0,, Y = 9, and Z = 9.,
with components

XH = (1,0,0)
Y* =(0,1,0) <« translations along x, y and z.
Z1 = (0,0,1)

Going to polar coordinates:

x =rsinfcos ¢,
y = rsinfsin ¢,

z=rcosf.
we get
ds* = dr? + r2d#* + r?sin® 0 d¢* .
Another Killing vector is

R=0y=—-y0;+20, = R'=(-y,2,0).

By permuting the coordinates, we get

RI' = (_y7 T, 0)
St =(z,0,—x) <= rotations around z, y and x.
T = (07 -z, y)

Exercise: Check that the above vectors indeed solve Killing’s equation.
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Noether’s theorem: Symmetries = conserved quantities.

What are the conserved quantities associated to Killing vectors?

Consider a geodesic with tangent vector P* = dx*/d\.
Claim: The quantity ) = K#P, is conserved along the geodesic.

Proof: Consider the directional derivative of Q:

D(K"P,)
DX

Examples:

e Time translations: K = 0
e Spatial translations: K = 0;
e Rotations: K =0,

4.4 The Riemann Tensor

— P'V (K

YP,) = P*P'V,K, + (P"V,P")K,

1
= S PP VK, + VK,
—0.

Q = K'P, = Fy (energy)
Q = K'"P, = P, (momentum)
Q = K"P, = P, (angular momentum)

On a curved manifold, parallel transport is path dependent:
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Consider an infinitesimal parallelogram:

Vo)
Vi
B
AP
The change of the vector along a side dx” is
SVH = %5A = —F’ij”CiZ—x/\p&\ using %‘QM = d;gﬂ + FﬁpV”le—gi\pcS)\ =0

= —I% V"5a".

vp
Parallel transport along the two paths gives
oVl = =T, ()V" () A" =T}, (x + AV (z + A) B,
oVl = =Tl (x)V"(x) B’ = T4, (x + B)V"(x + B)A?,
The difference is

— SUH 0
VI =6Vl — 6V

ore v o vv
:MBUAp_MAJBP_}_...
0x° ox°

= (9,11 V¥ +T% 9,V — ,T1 V¥ — T 9,V")APB° .

Using 9,V" = —I'?, V*, this becomes

SVF = Rl APBTVY]

where we have defined the Riemann tensor

Ruvpo = 8pFlzja - 80Fl;p + F/pLAFl)/\U o FZAFI)/\/J :

e Note: we have not used the metric yet!
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Alternatively: consider

V.,V V=V, v,V -V, V,V°
= 0u(V,V?) =T, VaVP + T NV, V7 — (u <> v)
= 0,0,V? + (8,10, )V° +T0,0,V° —T,,0,V* =T, I V’
+ 17,0,V + FZUFZAVA — (n > v)

A A o A
= (0,17, — GVFZU + FZAFW — Ff/’AFW)V — QF[W]VAV”.
We have therefore found that
V.,V VP =R,V =T, V)V,

which, for the Levi-Civita connection, becomes

Ricci
identity

[vua vy]v[) — Rpo/wvg

It is also instructive to give index-free definitions:

The torsion tensor is a map from two vector fields to a third vector field:
T(X7 Y) - vXYV - vY)( - [X7 Y] )

where [X, Y] is the commutator.

The Riemann tensor is a map from three vector fields to a fourth vector
field:
R(X,Y)Z =VxVyZ —VyVxZ —Vixy|Z .

Exercise: Show that these expressions reduce to our previous definitions when
we write them in components. [R(X,Y)Z = R, X'Y"Z7]
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Symmetries of the Riemann tensor

Only 20 of the 4* = 256 components of R, s are independent.
Many components of R, ,, = gu,\RAVpU are related by symmetries:

R/ll/pO’ = _Rl//z,pou
R,uz//)(f = _R/,LZ/(J'/)J
R,Ul//)(f = R/)(f/ll/)

R;uz/)(f + Ru/)m/ + R,um//) =0.

Proofs of these identities can be found in Sean Carroll’s book.

In addition, we have the Bianchi identity
VARILLV[JO' + VVR)\,U,pO' + VMRV)\pO' — 0 . (*)

Analog of the homogeneous Maxwell equation: 0\F),, + 0, F\, + 0,F,\ = 0.

Ricci tensor and Ricci scalar

e The unique contraction of the Riemann tensor is the Ricci tensor:

Ry = R\ = O\, — 0,00, + T3, 10, =TT |

e The trace of the Ricci tensor is the Ricci scalar:

R=R',=g¢"R,,|.

Example Consider a 2-sphere with ds? = ¢2(d6? + sin® 0 d¢?).

The nonzero Christoffel symbols are
quﬁ = —sinfcosf, Fg’(b = Fie = cot 6.
The nonzero components of the Ricci tensor are

Rgg =1 , R¢¢ = sin29,

2
and the Ricci scalar is R = g%Rgg - g¢¢R¢¢ =7
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4.5 Geodesic Deviation

In Euclidean space, parallel lines will never meet. Similarly, in Minkowski spacetime, initially
parallel geodesics will stay parallel forever. In a curved space(time), on the other hand, initially

parallel geodesics do not stay parallel. This gives us another way to measure curvature.

Consider two geodesics:

UH
B~
e Newtonian gravity:
d2 ) ) ’
_x2 = —0'®(x’) B2 o
L, ar = — =—0;0'0V
d=(z' +b') P dt?
——= = —0'®(2x) + V) 0
dt? ,
tidal tensor
e General relativity:
DB* dB* dzt
VH = — U'V,B' = TR UYBY, where UMC
DTt dr dr
D?B* avH
Al = =U'V,Vt = — +TH UV,
D2 uv,v i + 17UV

Using the geodesic equation for the two paths, we find (see lecture notes)

D*BF _piprpepe,  Geodesic deviation
Dr?2 e equation

= The Riemann tensor plays the role of the tidal tensor.
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Chapter 5.
THE EINSTEIN EQUATION

We will determine the Einstein equation in two different ways. First, we will “guess” it. Then,
we will construct an action for the metric and show that corresponding equation of motion

leads to the same Einstein equation.

5.1 Einstein’s Field Equation

Newtonian gravity: GR:

Tidal tensor: 0;0;® Riemann tensor: R, .-

Poisson eqn: V?® = 0'0;® = 47G p  Einstein eqn: R, = RA,MV = 7
T T T T

trace Too trace T

A first and second guess

Einstein’s first guess was
?

R, = kT, .

This doesn’t work because the Bianchi identity implies

0= g)\agup (VARuupa =+ VVR)\upU =+ V,uRV)\pa)
— VR, — V,R+V’R,,.

so that 1
V'R, = SV.R. )

= V"R, # 0 would be inconsistent with V#T),,, = 0 (which must hold!)

However, (*) implies

1 Einstein
— UK =z = K
0 \Y (R/w 29/11/R> =V G/u/ tensor
An improved guess therefore is
? Einstein
G = 6T equation
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Newtonian limit

Let us show that this has the correct Newtonian limit.

The trace of the Einstein equation is R = —kT.

= The trace-reversed Einstein equation then is

1
R, =k (Tuv — §guyT> .

In the Newtonian limit, we have
Toww=p and T =g"Ty~ —To=—p.

Hence, we get

1
Roo = §l*€p.

For g, = N + hyw, we have

Roo = R'oio = 0,4y — 0ollg + T — TonIo

The relevant Christoffel symbol is

Lo = %g”(@ogm + Jogox — Orgoo)
= —%&'jajhm.
We therefore have
Ry = —%v%oo =  V?hg = —kp.

Recall that hgy = —2P (geodesic equation or equivalence principle). We there-
fore reproduce the Poisson equation if

k=8rG = |V®=4nGp).

42



The Einstein equation

The final form of the Einstein equation then is

G, =8rG1T,,|.

This is one of the most beautiful equations ever written down. It describes a wide range of

phenomena, from planetary orbits to the expansion of the universe and black holes.

e 10 equations — 4 constraints (V*G,,, = 0) = 6 independent equations
e Non-linear equations of g,,: can’t superpose solutions!
e Curvature is sourced by 7},,: energy and momentum (pressure)!

5.2 Einstein-Hilbert Action

Alternatively, derive the Einstein equation from an action.

The unique action for gravity is the Einstein-Hilbert action:

S:/dd‘x\/—gR )

where g = det g,,,. Note that

'
d'z — A%’ = det (ai) d'z

oxH

dxt D" az\1?
detguy—>detgﬂ/,/:det< roT ): {det( x/)] det g,

ozt Oz i oxh

so that d*z,/—¢ is invariant under a coordinate transformation.

Example: In Cartesian coordinates, /—gd*r = dtdz dydz, while in polar
coordinates this becomes /—¢ d*z = r?sin 6 dt dr dd dé.

Writing R = ¢g"”R,,, and varying S with respect to the (inverse) metric gives:
05 = /d45’7[ (5\/ _g>9/WR;w + V=g 5.,(]/“/R/U/ + V=g ,(J/W(SR;U/

1 2 3

e 'Term 3 is a total derivative:

GUOR,, =V, X", with  XF = g"eTh, — g"oT?

and can therefore be dropped.
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e Let us look at Term 1:

Any diagonalizable matrix M obeys

In(det M) = Tr(ln M) = §(det M) = Tr(M~*6M).

det M
Applying this to the metric, we get

69 = 9(9" 0gw)
= —g(gw09")  [using &(gug"") = 6(0}) = O]

Hence, we find

IVEES o =q =5 0g

g v
= 5= Juw0g"
2v/—qg "
1 v
= _5\/__gguu5gu .

Substituting this into 6.5, we find

1
08 = /d4x\/ —9g (R/w _ 59/11/R> 5.9/”/ .

= 0.5 = 0 implies the vacuum Einstein equation:

1
RUV — §glw,R =0].

5.3 Including Matter

To get the non-vacuum Einstein equation, we add an action for matter:

1
S = %/dllx\/ —gR + SA;\,] .

Varying this action with respect to the metric gives

1 1
0S = 5/(14{17\/ —g <EGILLV - Tuv) 5.9””7 (**)

where we have defined

2 0Suw| energy-momentum

\/__g dogtv | tensor
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= 0S5 = 0 then implies

G = K|,

where k = 877G is fixed by the Newtonian limit (as before).

e Recall that o/ — 2/ — V# implies dg,, = V,V, + V., V..
Substituting this into (**) gives

1
68 = / d'zy/—g (EGW - TW> vHVY
— (1

Since V*G,, = 0 (Bianchi), we get 65 = 0 (diffeomorphism invariance) iff

V#T,, =0| < covariantly conserved.

e Recall that (or see Appendix A)

T Too|To; \ [ energy density‘ momentum density
e\ T Ti; N energy flux ‘ stress tensor '

Examples:

e Scalar field
5= [diav=g (—%gﬂ”vmw - %m%?) ,
T = VbV — 50 (VP6V,0-+ m*6?)
e Electromagnetic field

1 o _UT
S:—Z/(YLQZ‘V—QQMQ FUTF,uya
1

T, = 'OUFW,FW — ZQWF'OUFW .
e Perfect fluid
—p 000
U*=(1,0,0,0) 0 P00
T v — P ! ‘Tz,/ P v ’ TMI/ —
0O 00PF
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5.4 The Cosmological Constant
Since V*g,, = 0, we can add Ag,, to G, without affecting V#T,,, = 0.

The modified Einstein equation is

G+ Mg =8nGT),, | .

which comes from the following action

— 1 4
S = 167rG/d rv/—g(R —2N) + Sy .

5.5 Some Vacuum Solutions

In general, the Einstein equation is hard to solve. A few exact solutions nevertheless exist
in situations with a large amount of symmetry. We will first consider the vacuum Einstein

equation with a cosmological constant.

Let 7,,, = 0, so that

1
Ruy - §g,uyR = _Ag,uy .

Taking the trace, we get R = 4A and hence

Ruy - Aguz/ .

5.5.1 Schwarzschild Solution
We start with A =0 = R,, = 0.

The trivial solution is Minkowski space
ds* = —dt* + dx”.

A more interesting solution is the Schwarzschild solution

2GM 2GM\ !
ds2:_(1— ¢ )dt2+(1— ¢ ) dr? + r?(d6? + sin” 0 d¢?) | .

r r

Let’s derive it.
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We start with Birkhoff’s theorem (see Problem Set):

Any spherically symmetric solution of the vacuum field equations must be
static.

The most general ansatz for a static, spherically symmetric line element is
ds? = —e200) g2 1 280042 4 2132402 |

Defining

d
F=eyr = dF = (1 + Tl) e’dr,
dr

we get

-2
ds? — _e2a(r)dt2 + (1 + T;h) 625(7“)—27(7")(1772 T 72402 .
T

Performing the following relabelings
r—r,

d -2
(1 n T_’Y> 202 _y 25
dr

we can write
ds® = —*de? + " dr? + r2dQ?

The associated Christoffel symbols are

Il =0.a I, = 99,0 " =0,
1 1
F9 —_ - r = — _26 F¢ — —
o = 00 re re =

é cos

o= _—re 2Psing I — —sinfcosf ry, =——.
00 00 0 = Gng

Substituting this into the definition of the Ricci tensor

A A A A
Ry = 0\, — 0,10, + T3, I%, =TT

we get
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Ry = e2@=h) [(9?& + (0,a)? — 0,00, + g&a]
r

2
R, = —0%a — (0,a)* + 0,00, + ;&ﬁ
Rgg = % {r(&ﬂ — Orx) — 1} +1
R¢¢ = sin2 QRQQ .

To satisfy the vacuum Einstein equation, these components must all vanish.

We then have 5
0 — eQ(B_Q)Rtt + R’r’r — _(87"04 + a’I’/B) 9
r

so that a = —f + ¢, where c is an arbitrary constant.
Defining t — e~ “t, we have

a=—0]|.

Using Rgp = 0, we get
(2roa+1)=1 = 0 (re®™) =1.

Integrating the last expression, we find

eQazl__
T

where Rg is an integration constant.

What is Rg? Recall that

GM
g = —(1+2®), with &=-———
.

and hence we identify the Schwarzschild radius as Rg = 2G M.

The final form of the Schwarzschild metric then is

20GM 2GM\ !
ds2:—(1— G >dt2+<1— G ) dr? + r2d0?|.

r r
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5.5.2 De Sitter Space
Now, let A > 0. We try the ansatz

ds® = —**"de* + e Vdr? +r7dQ7.

The corresponding Ricci tensor is

-
Ry = e {8304 +2(0,a)* + Z0,a| = —€"R,,,
r

Ry = sin? 6 {1 — > (1 + 27’&@) = sin®ORyy .
This satisfies R, = Ag, if

2
Pa+2(0,a)? + =0,a = —e 22A
r

1— 620‘(1 + 27“&04) = r?A

which is solved by

T2

e =1 —

7| where R*=3/A.

The corresponding metric is

]
2 _T_Q 2 _7”_2 2 2 192
ds® = 1 e dee+ (1 e drs + r“d(2 dS

5.5.3 Anti-De Sitter Space

Finally, we can also have A < 0. In that case, we get

R? R?

2 r? 2 r’ ! 2 2 102
ds*=—(1+—=|dt"+ |1+ —= dr® + r=dQ2 AdS

where R? = —3/A.
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Chapter 6.
BLACK HOLES

One of the most remarkable predictions of GR is the existence of black holes. These are

regions of spacetime from which nothing, not even light, can escape.

6.1 Schwarzschild Black Holes

In the previous chapter, we derived the Schwarzschild solution:

2GM 2GM\ '
d32:_<1— ¢ )dt2+<1— ¢ ) dr? + r?(d6? + sin® 6 dp?) .

r r

What is going on at r =0 and r = 2GM?

Singularities

To decide whether a singularity is real or not, look at scalar curvatures:

R = g/WR/,W =0,
R"R,, =0,
- 48G2M?
RIVPTR = 0

/’n6

= r = 0 is a real singularity.
= r = 2G'M is just a coordinate singularity.

Nevertheless, r = 2G M is an interesting place!
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Event horizon

Consider an object of mass My = 6 x 10?* kg (Earth).
This gives Rga = 2GMyg/c* = 8.9 mm:

Similarly, for M, = 2 x 10%kg (Sun) = Rg» ~ 3km.

e For ordinary planets or stars, Rg < R is not part of the spacetime.
e An object with R < Rg is a black hole.

Near horizon limit: Rindler space

Let us look at the near horizon geometry by defining
r=2GM +n,

with 0 < n < 2GM.
Using

1

2GM_1 2GM _ 1 ( n )—1N n
ro 2GM +n -~

r? = (2GM +n)* = (2GM)* +O(n),
the metric becomes

2GM
ds? = —— L g2 £ 220 402 4+ (2GM)2d02 .
° \ 2GM + n 77/ + L,z_/
IS

Rindler space
Defining
¢dg®
(AGM)? 2GM

PP =8GMy = dnf = dg”

the metric of Rindler space becomes

2
d82 = — (ZLC}'LM> dt2 -+ d,O2 .
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Using the transformation

t
T = psinh (4(}'—M> X2 _T?% = p?

t
X = pCOSh (m)

the Rindler metric becomes

ds* = —dT? + dX?|,

with X € (0,00) and —X < T < X.

= Rindler space is just a patch of Minkowski space in disguise:

T
A &,

= const

e The event horizon is a null surface, not timelike as for a star.
e Nothing special at » = 2GM: can extend coordinates to T, X € R.
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Eddington—Finkelstein coordinates

Let us play the same game for the full spacetime.

To motivate the choice of new coordinates, consider radial null geodesics:

-1
d32:0:—(1—2GM> dt2+(1—2GM) dr?.

r r

and hence

dt (1 B 2GM> - + : outgoing

— : ingoing

= Light cones “close up” as they approach r = 2G'M:

VOV

Step 1: To avoid the closing up of the light cones define

26 M\ 2 r
*2 . 2 K .
dr*s = (1 . ) dr = 7 r 4+ 2GM In (—QG 1)

= tortoise coordinate

t

2GM

so that
dt

=41 = t=+7r"+const.
dr*
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= The light cones are then like in Minkowski:

t

—— r=2GM

r* = —00

The metric becomes:

(h%:OeQGM>Qﬂﬂ+dﬁ%+ﬂM?.

r

e No singularity at r = 2GM.
e Still degenerate at r = 2G'M .

Step 2: Define null coordinates:

* . .
v=1t+7", v = const : 1ngoing
u=t-—r". u = const : outgoing

Replace t by t = v — r*.
This gives the metric in tngoing Eddington-Finkelstein coordinates

2GM
ds* = (1 _ 2 ) [— (dv — dr*)? + dT*Q] + r2dQ?

(A
(1_2GM

r

)[—dﬁ+2m@ﬁ]+ﬁaﬂ

2GM
=|— (1 — ) dv? + 2dvdr + r2d0?| .
r

No degeneracy at r = 2GM:
—(1—-2GM/r)1 0 0

g =det g = (1) 8 7?2 8 = —r*sin? 4.
0 0 0 r?sin?6
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Radial null geodesics satisfy:

t 4+ r* = const (ingoing)

v =
2r* + const = 2r + 4GM In (1 - QGLM) + const (outgoing, r > 2G M)

The log is ill-defined for r» < 2G M.

Define modified tortoise coordinate:

2GM\
r*=r+2GMIn —1‘ & dr*zz(l— ) dr?

2GM r
so that
v=2r+4GM In ‘1 — ZGLM‘ + const  (outgoing, 0 < 7 < 00)
0 (ingoing)

dv )

o= 2GM Y\

dr 2 (1 — ) (outgoing)
r

= Light cones now don’t close up at r = 2G M, but they “tilt over”:

v

~n A A
N

r=20 r=2GM
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Finkelstein diagram
Definev =t+r*=t"+r,so that t* =v —r.

Geodesics in the t*—r plane are:

t* =v—r
A

< outgoing

- < ingoing

= Inside the horizon, outgoing null rays don’t go out!
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White hole

Repeat the exercise with the outgoing Eddington-Finkelstein coordinates.
Replace t by t = u + r*.

The metric becomes

2G M
ds® = — (1 - ) du?® — 2dudr + r2d0?| .
T

The Finkelstein diagram is

t*=u+r

N

/

< outgoing

< ingoing

= Inside the horizon, ingoing null rays don’t go it!
= QOutgoing null rays get expelled from inside the horizon.

This is a white hole (= time reverse of a black hole).
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Kruskal coordinates
We have found two ways to extend the r € (2GM, o) coordinates.

In Rindler space, these correspond to

T T

ingoing coordinates outgoing coordinates

Let’s make this explicit by finding coordinates which cover the entire spacetime.

Step 3: Use both null coordinates v =t +r* and u =1t — r*.

This gives
( QGM) —dt* + dT*Z] + r?dQ?
= ( QGM) —d(t+r)d(t — )] 4+ r*dQ’
_|- ( QiM ) dudv + 72402

= Still degenerate at r = 2G M.
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Step 4: Define the Kruskal coordinates:

[J — —p u/iGM UV — —/2GM _ _ (2(§M . 1) er12GM
V = eU/AGM e

_[
Vv
The metric becomes

2GM
d32:—<1— G )dudv+r2d92

-
2G MY\ (4GM)? 5 9
=—(1- dUd dQ2
( " ) v udv +r
_ 2GM 2 r -1 —r/2GM 2102
— (1 - )(4GM) (QGM 1) e dUdV + r2dQ
_32(GM)3

— | I o 2EGM QY+ r2d02
T

= Nothing special at r = 2GM!
= Extend the Schwarzschild coordinates (U < 0 and V' > 0) to U,V € R.

We can also define

1 2 y2_ (1 _ T r/2GM
r=lwivy, T-X= (1o gg)
1 L tanh ¢
e — _ = n -

and write the metric as

2(GM)?
ds? = 2HEM) e PEM(—dT? + dX?) + r2dQ° | .
r
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Kruskal diagram

This is the Schwarzschild spacetime in Kruskal coordinates:

T
U Vv
7« XCP
&//

\ IT //%C’ < r = const

/ 11
/ R
? b

e Region I: Outside the horizon
e Region II: Black hole

e Region III: White horizon

e Region IV: Mirror black hole

74
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N

—

Regions I and IV are spacelike separated and connected by a wormhole.
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6.2 Charged Black Holes
A charged black hole is described by the Reissner-Nordstrom solution

2 2\ —1
d32:—<1—2GM+Q)dt2+(1—2GM+Q—2) dr? + r2d0?|.
T

r r2 r

Now, there can be two horizons:

2GM
R A S S P Y S e
T

r

e For |Q] — 0, we get r— — 0 and . — 2G'M.
e For || > GM: no horizon; r = 0 is a naked singularity.
e For |Q] < GM: two horizons
e For || = GM: we get an extremal black hole
GM\° GM\ ™~
ds® = — (1 — —) dt* + (1 — —) dr?® + r*dQ*.

r r

For r = GM + n, with n < GM, this becomes

2 GM)2
g — — g An? + (GM)2A02 .
C= et Ty T (GM)d
A -~ _J/ 2
AdS, S

= Beginning of AdS/CFT.
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6.3 Rotating Black Holes
A rotating black hole is described by the Kerr solution

sin® 6
2

P

A+ p7de”

(72 + a®)d¢ — adt]” +

A
ds* = _E(dt — asin®0de¢)? +

where a = J/M is the angular momentum per unit mass and

A=1r?—2GMr+d?,

p* =7r*+a’cos’ 0.

Again, there can be two horizons:

A(r)=1*—-2GMr+a*=0 = |rp=GM++/G*M?—a?|.

e a > G'M: no horizon; r = 0 is a naked singularity.
e a = GM: extremal black hole
e a < GM: real world black holes

Something interesting happens just outside the outer horizon:

0 1
K — 5 = guwK'"K" = gy = —=(1r* + 2GMr + a” cos” )
P

becomes spacelike at 7 < GM + v/ G2M? — a2 cos? § (= ergoregion).

ergoregion

outer horizon

e Particles can have £ = —K,P" < 0 in the ergoregion.

e Extract mass and angular momentum through the Penrose process.
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Chapter 7.
COSMOLOGY

One of the most important applications of general relativity is to cosmology. Our goal in
this chapter is to derive, and then solve, the equations governing the evolution of the entire
universe. This may seem like a daunting task. Fortunately, the coarse-grained properties of

the universe are remarkably simple.

7.1 Robertson-Walker Metric
Averaged over large scales, the universe is

e homogeneous (the same at every place)
e isotropic (the same in all directions)

The spacetime is a foliation of homogeneous and isotropic slices:

flat spherical hyperbolic

The line element is

ds? = —dt* + m X | yiidatda’

scale factor symmetric 3-space
What is the metric on the 3d slices?

Assuming isotropy about a fized point r = 0, the spatial metric is
dl? = v;;da'da? = 2 dr? 4 r2d02 .

The corresponding scalar curvature is
2 d —2a(r) - .
Rsy[vij] = 3 1—— (7“6 > = 6K = const < homogeneity
where K = 0 (flat), K > 0 (spherical) and K < 0 (hyperbolic).
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Integrating this expression, we get

2a(r) 1

© T 1 K2 + br—1°

For the limit » — 0 to be well-defined, we must set b = 0.
The spatial metric then is

dr?

2 _
de 11— Kr?

+ 2,

and the spacetime metric becomes

dr?

— 20 Robertson-Walker metric
1 — Kr?

ds* = —dt* + a*(t)

7.2 Friedmann Equation

The evolution of scale factor follows from the Einstein equation:

Gla(t)] =8rG 1T,

T T
curvature perfect fluid
We start on the left-hand side:
e Christoffel symbols
Iy =T03=0,
Iy, = aay;,
. a .

k=37 "(05vm + Okt — Orvin) -

e Ricci tensor .
a

Rop = —3—,
a




e Ricci scalar

R — gMVR,u,I/

e Einstein tensor

Gij = — gij -

i a\’ K
2—+ (= +
a a a

On large scales, the energy-momentum tensor is that of a perfect fluid:

T, =((p+P)UU,+ Py .
In the rest frame, this becomes

Too=p,
Tij = Pgij -

e The temporal component of the Einstein equation then is

Go =8nGTy =

a 2 _ &G K Friedmann
3 a? equation

a

e The spatial components imply

. . 2
K
GUZSWGTU == 294—(9) +—2:—87TGP
a a a
a 4G i
N a_ 4T (p+ 3P) Raychau.dhurl
a 3 equation
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The evolution of the fluid is determined by V ,T"" = 0.
The v = 0 component leads to

0=V, T" = 8,T" + T, T + I, T
= 0T + T T + T, 7" (using T = 0)
= 0T + Ty T + T9;T7  (using I'), = 0)
. La

so that

L R0 continuity
p= 3a(p—|—P) equation

The fluids of interest in cosmology have a constant equation of state:

( matter

radiation

0
1
3

R

—1 dark energy

\

The continuity equation then implies

¢
a~® matter

p_ —3(14+w) = p= Po x ¢ a~* radiation
p

\ a’ dark energy

When the universe is dominated by a single component, the Friedmann equa-
tion gives

( t2/3 matter
a 2 1 " 2/3(14w) "
(5) x 0 =  at) = (_) x { t/* radiation

\ ef! dark energy
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7.3 Our Universe
The universe has multiple components:

baryons (b)

photons () neutrinos (v)  electrons (e) protons (p)\ cold dark matter (c)

S

radiation (r) matter (m)

The evolution is dominated first by radiation, then matter, then dark energy:

< past future —>

radiation era matter era ' dark energy era

1030 _I\ I T T
10%°

>

1020 | |
—~ 10" -
S
Q 1010 | ]

I |
10° L Pm | -
1L | PA i
| \\k L

10790 107® 107 107* 1072 1 102 104

BBN
CMB

107°

The Friedmann equation is

e B _
H? = T(pr,()a Y pmoa + pan)

where H = a/a and a(ty) = 1.

K
a?’

e The expansion rate today is Hy = 70km/s/Mpc, where Mpc = 3 x 10?2 m.
o A flat universe (K = 0) has

3H?
0 —8.9x 107* gramscm ™

Perit,0 = 370
= 1.3 x 10! M, Mpc ™3
= 5.1 x 107% protonsem ™3 .
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e The Friedmann equation becomes

HZ
= Qa4+ Qa2+ Qra 2+ Qul,
0

where €; = pio/paito (for i =r,m,A) and Qx = —K.

e The measured cosmological parameters are:

Q,=899x107°, Q,=032, Q=068, [Qx|<0.005

with |€), = 0.05] and |2, = 0.27].

There are many open questions:

e What is dark matter?

e What is dark energy?

e What created the matter-antimatter asymmetry?
e What created the initial density fluctuations?

See Ben Freivogel’s Cosmology course.
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Chapter 8.
GRAVITATIONAL WAVES

Just like the Maxwell equations allow for electromagnetic wave solutions, the Einstein equations
admit gravitational waves as solutions. Although these gravitational waves were predicted over
a century ago, they we detected only very recently. In this chapter, I will give a brief sketch

of the physics of gravitational waves.
8.1 Linearized Einstein Equations
Let g, = Ny + by, with |k, | < 1.
e The linearized Christoffel symbols are
o L ox
IV = 3" (Ophur + Ovhyy — Orhyw) -

e The Riemann tensor is

Ry = 0,1, — 0,10 + T, T9, —T) I

BT pA Pl VA
=L, — 9L,
1
= §nJA((9p0ﬂfL,,A — 0,00l — 0,0,hpx + 0,00hy,) -

e The Ricci tensor is

1
awz§@m%mA—me+ya@M—@@m%

with h = 1, and O = 0"9,.
e The Ricci scalar is

R = 0"0"h,,, — Oh.

e Finally, the linearized Einstein tensor is

1
G/U/ - 5 8>\auhy)\ + y‘@yhu)\ - Dhm/ - 8Mavh - (apéahpa o Dh)nﬂy}

=81G T,
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Gauge symmetry

Recall that z# — x# — £"(x) leads to dg,, = V& + V., .
This implies

Py — Dy + 0,8 + 0,8, Similar to: A, = A, + 0«
Like F,, = 0,A, — 0,A,, the linearized R?,,, is gauge invariant.

Gauge fixing

It is often useful to pick a gauge:

Gauge: Lorenz gauge: de Donder gauge:
1
oA, =0 0"hy, = §8Z,h
1
Field equation: A, = J, ] (huy — Eh 77#1/) = —167G T},

Hence, we have

_ _ 1
Ohy = —167nG T, |, where hy, = h,, — §h Ny -

Newtonian limit
Using O = —9? + V2 — V2, and Ty = p(x), Ty = T;; =0, we get
VQBOO = —167TGp(X) ,
V2hei =0,
V?hij = 0.
This reproduces the Poisson equation, if hgy = —4®(x) and hg; = hi; = 0.
Using h = +4®(x), we get

h()o - —2(13,
hOi = 07

and hence
ds® = —(1 4+ 2®)dt* + (1 — 20)dx?.
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8.2 Gravitational Waves

Gravitational waves are solutions of the vacuum equation:

Ell_zw =0 = fLW = Re(HWeik”A)

. with k" =0.

= Gravitational waves travel at the speed of light: w = +k]|.

Polarizations

Naively, the polarization matrix H,, has 10 components.
However, only 2 are independent.

Electromagnetism:
e A¥ has 4 components.
e Lorenz gauge, 0"'A, = 0, reduces this to 4 — 1 = 3.
e Residual gauge symmetry,
A, — A, + Oy,
oMA, — 0"A, + Oo,

leaves 3 — 1 = 2.

Linearized gravity:

® h,, has 10 components.
e de Donder gauge,

Mhy =0 = |k'H, =0,
reduces this to 10 — 4 = 6.

e Residual gauge symmetry,

R — Ty + 0,60 + 0,6, — 07Emu
OMhyy — 0"y, + 08,

leaves 6 — 4 = 2.

The residual gauge transformation, &, = )\ue“”"rA (< 0, =0),
relates equivalent polarizations

H,, — H,, +i(k, )\ + koA — k7 Aen) -

This allows us to set

Hy, = H",=0| (transverse, traceless).
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Consider a wave propagating in the z-direction: k* = (w,0,0,w).

e De Donder: k*H,, =0 = Hy, + H3, = 0.
e Transverse, traceless:

00 0 0
g |0H: HeO
ol 0H, —H, 0

00 0 0

Stretching space

Consider a ring of particles in the x-y plane:

Recall the geodesic deviation equation:
D? B+
D2
Assume U* = (1,0,0,0) (particles at rest) in the absence of the GW:

d?BH 1 d?h*
= RNy B =|———LBP|.
dt? e

Consider the + polarization (i.e. Hx = 0). Let z = 0.
We then have

= — Rl U"U’ B,

dB! w2

W — —7H+€thBl,
dB2 2 )
W — +%H+GZWtB2,

Perturbatively in small H,, we get

1 .
Bl(t) = BY(0) (1 S H e 4 ) |

BY(t) = B(0) (1 — SHe ) ,
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which implies

OO0 0000

A similar analysis for the x polarization leads to

elslolololnte

The stretching and squeezing of space is used in the detection of GWs:

Y

Y

5_L ~ H+’X

7 ; ~10721 = SL~10®m (sick!)
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8.3 Creating Waves

To understand the production of gravitational waves, we have to consider

Ohyy = —167G T, .

The solution is

- Ty (tr,
MMt@=4G/d%JA—lL
¥ ‘X—YI

with “retarded time” t, =t — |x — y|.
At leading order in the multipole expansion (d/r < 1), this implies

- ure

bt = 2 [ @y Tyl =ny),

where r = [x|. [Other components, hgy and hy; are related by gauge conditions.]

Ex: Using 0,T"" = 0, show that

- 2G d*1;;
hijt, %) = ===

,  where [;; = / d’y 7% YiYj -
s

quadrupole moment
Hint: Note that T% = O(T%*y’) — (0, T*)yy — 9T .

Cf. electrodynamics: radiation is sourced by a time-dependent dipole.
< No dipole for gravity (because no negative gravitational charge).
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8.4 September 14, 2015

Hanford, Washington (H1) Livingston, Louisiana (L1)

T T T T T T T T

~‘ —— L1 observed m

|— H1 observed I H1 observed (shifted, inverted)
I I

T T T T

Strain (10%%)

-1.0[ — Numerical relativity | H H — Numerical relativity V =
Reconstructed (wavelet) Reconstructed (wavelet)

[ Reconstructed (template) I Reconstructed (template)
T T T 1

' _|— Residual | = Residuall | | l |

> 83
C

g 6 &
O pe]
£ 4 &
2 ¢
02

0.30 0.35 0.40 0.45 0.30 0.35 0.40 0,45

Time (s) Time (s)

e A new era of science was initiated by the detection of GWs.
e All observed events are in perfect agreement with the predictions of GR.
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Appendix to Chapter 6.
PENROSE DIAGRAMS

A black hole is defined as the region of space from which light cannot escape to infinity. The
boundary of that region is the event horizon. In the Kruskal diagram, infinity is still a large
distance away. A more precise way to capture the black geometry maps the points at infinity

to a finite distance. This leads to the famous Penrose diagram.

Two-Dimensional Minkowski

Consider
2 2 2 v=t+x v=tanv 1 ~ 1~
ds® = —dt* +dx® ————— —dudv > — 5 2~dudv.
u=t—x u=tanu COS“ U COS“ v

The last transformation maps u,v € (—o0,00) to u,v € (—7/2,+7/2),

The overall factor does not affect null geodesics, with ds? = 0.
The causal structure of ds? is therefore the same as that of d3? = —dudo.

The Penrose diagram of R is

The boundaries of the diagram are different types of infinity:

e ;*: past and future timelike infinity.
e i’: spacelike infinity.

e .7*: past and future null infinity.
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Four-Dimensional Minkowski

Consider

v=t+r 1
ds® = —dt* + dr? + r2dQ0> = —dudo + J(u= v)2d0?

u=t—r

v=tan v 1 ~ 1~ in?(i — o
—tand <—dudv—|——sm <Z U)dQ2>.

>

u=tana  cos% U cos? v
Because r > 0, we have v > u and hence
Tc<a<o<i
—=—<u<v< —.
2 2
To draw a two-dimensional diagram, we suppressed the angular coordinates.

The Penrose diagram of R is

The vertical line corresponds to r = 0 and is not a boundary of the spacetime.
A null geodesic that starts on .#~ will simply be reflected at the vertical line.
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Schwarzschild Black Hole

We are ready to return to the Schwarzschild geometry

32(GM)3
ds? = — (GM) e TPEMAUAV + r2d0O2.

r

Define

tan

Ve (—n/2,41/2).

ic becomes

Y

so that U

The metr

2Vd91.

U cos

UdV + r? cos?

)3
e—T/ZGMd

32(GM
r

[_

cos? U cos2V

t

now 1is a

)

or UV =1

(

The singularity at » =0

tanUtanV =1 = sinUsinV — cosU cosV = 0

+7/2].

0= |U+V

The Penrose diagram of a Schwarzschild black hole is
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Real Black Holes

The Penrose diagram for real black hole is a hybrid of the diagrams for the
Schwarzschild geometry and that of four-dimensional Minkowski space:

T = .
0 -

j-ﬁ-
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