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Chapter 1.

GRAVITY IS GEOMETRY

1.1 What’s Wrong With Newton?

Why do we need a better theory of gravity than Newton’s? At an observational level, because

Newtonian gravity fails at a certain level of accuracy; for example, for predicting the orbit of

Mercury. More conceptually, Newtonian gravity is in conflict with the fundamental principle

of special relativity that no signal should travel faster than light. We will start there.

Consider a particle in a gravitational field:

ρ(x, t)

m

−m∇Φ

The field satisfies the Poisson equation:

∇2Φ = 4πGρ ⇒ Φ(x, t) = −G
∫

d3x′
ρ(x′, t)

|x− x′| .

Problem: Φ(x, t) reacts instantaneously to changes in ρ(x, t).

A similar problem arises in electrostatics:

∇2φ = −ρe
ε0

⇒ φ(x, t) =
1

4πε0

∫
d3x′

ρe(x
′, t)

|x− x′| .

Solution: Maxwell’s equations

∂νF
µν = Jµ ⇐

Aµ = (φ,A)

Jµ = (ρe,Je)

Fµν = ∂µAν − ∂νAµ

Goal: Find the analog of Maxwell’s equations for gravity.

1



1.2 The Equivalence Principle

Why do objects with different masses fall at the same rate?

a1 = a2

Answer: mass cancels in Newton’s law. BUT: we should really write

��m a = ��m g mI a = mG g

↑ ↑
inertial mass gravitational mass

(like charge)

Experimentally:
mI

mG
= 1± 10−13. Why?

Weak Equivalence Principle (WEP):

• mI = mG ⇒ Gravity is universal: ẍ = g(x, t)

⇒ A uniform gravitational field is indistinguishable from

uniform acceleration.

M m
g

Earth

a
M m

Empty space

⇒ A freely falling observer will not feel a gravitational field.

g
M m
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Einstein Equivalence Principle (EEP):

No experiment can distinguish a uniform gravitational field from uniform ac-

celeration.

⇒ Locally, you can always find coordinates so that there is no acceleration.

⇒ In a small region, the laws of physics reduce to those of special relativity.

Tidal forces:

A non-uniform gravitational field cannot be removed by going to an accelerat-

ing frame:

Earth

Freely falling frame

Tidal forces are the real effects of gravity.

3



1.3 Gravity as Curved Spacetime

Consider Alice and Bob in a gravitational field:

z

g

Alice

Bob

Alice shines light with wavelength λA = λ0.

What is the wavelength λB observed by Bob?

By the EP, this situation should be the same as:

a

Alice

Bob

The light reaches Bob after a time ∆t ≈ h/c.

Bob’s velocity has increased by ∆v = g∆t = gh/c.

Due to the Doppler effect, the received light is “redshifted”

∆λ

λ0
=

∆v

c
=
gh

c2
.

By the EP, the same effect must occur in a gravitational field:

∆λ

λ0
=
gh

c2
=

∆Φ

c2
.

⇒ Gravitational redshift: observed by Pound and Rebka in 1960.
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Since T = λ/c, we can also think of this as time dilation:

TB =

(
1 +

ΦB − ΦA

c2

)
TA .

⇒ Time runs slower in a region of stronger gravity (smaller Φ).

Why does this imply curved spacetime?

Alice now sends out two pulses of light, separated by ∆tA.

Bob receives the signals spaced out by ∆tB.

t

z

∆tA

∆tB

zA zB

In a static spacetime, the worldlines must have identical shapes and hence

∆tA = ∆tB ,

in contradiction with the time dilation required by the EP.

Resolution: spacetime is curved.
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In GR, the spacetime corresponding to a weak gravitational field is

ds2 = −
(

1 +
2Φ(x)

c2

)
c2dt2 +

(
1− 2Φ(x)

c2

)
dx2 ,

where Φ� c2.

The proper time measured by Alice then is

∆τA =
√
−g00(x) ∆t =

√
1 +

2ΦA

c2
∆t ≈

(
1 +

ΦA

c2

)
∆t .

Similarly, the proper time measured by Bob is

∆τB ≈
(

1 +
ΦB

c2

)
∆t .

Combining these expressions, we find

∆τB =

(
1 +

ΦB

c2

)(
1 +

ΦA

c2

)−1

∆τA ≈
(

1 +
ΦB − ΦA

c2

)
∆τA .

⇒ The time dilation has been explained by the geometry of spacetime.
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Chapter 2.

SOME DIFFERENTIAL GEOMETRY

Since gravity is a manifestation of the geometry of spacetime, we will start this course by

developing the necessary mathematical background to describe curved spaces and, ultimately,

curved spacetime. Our treatment won’t be rigorous, meaning that we will not prove anything

the way mathematicians would. The purpose of this chapter is to understand what kind of

objects can live on curved spaces and the relationships between them.

2.1 Manifolds and Coordinates

An n-dimensional manifold M is a continuous space that looks locally like

Rn. The different patches of the manifold can be smoothly sewn together.

M

U
p

Rn

ϕ

Coordinates are maps between an open set of points U on M and points

on Rn:

φ : U 7→ Rn .

The map φ is also called a (coordinate) chart.

For every point p ∈ U , we have φ(p) = (x1(p), . . . , xn(p)), or

φ(p) = xµ(p)

{
µ = 1, . . . , n Euclidean

µ = 0, . . . , n− 1 Lorentzian

The inverse map φ−1(xµ(p)) gives you the point p on M .
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In general, we need more than one chart to cover the entire manifold:

M

U1

U2

Rn

xµ

ϕ2 ◦ ϕ−1
1

Rn

yµ

ϕ1
ϕ2

• The collection of all charts φα is called an atlas.

• All charts must be compatible in the regions of overlap:

The transition functions
φ2 ◦ φ−1

1 : yµ(x)

φ1 ◦ φ−1
2 : xµ(y)

are smooth functions.

Examples

• S1: The circle is defined as a curve on R2 with

(x, y) = (cos θ, sin θ) .

You usually take θ ∈ [0, 2π), but this is not an open set, which causes problems

if we want to differentiate at θ = 0.
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Define two charts to cover S1:

θ1

ϕ1

0 2π

q1
θ2

ϕ2

−π π

q2

The transition function is

θ2 = φ2(φ
−1
1 (θ1)) =

{
θ1 if θ1 ∈ (0, π)

θ1 − 2π if θ1 ∈ (π, 2π)

which is smooth in the regions of overlap (upper and lower semi-circles).

• S2: Similarly, we need two charts to cover a sphere:

x

y

zϕ1

x

y

zϕ2
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2.2 Functions, Curves and Vectors

Next, we define additional structures on manifolds.

A function is a map

f : M 7→ R ,

which assigns a real number to each point on the manifold. Introducing a

coordinate chart φ in a region U ∈ M , the composite map f ◦ φ−1 gives

f(xµ), which describes the function in terms of coordinates on φ(U) ∈ Rn.

M

U

f

f ◦ ϕ−1

Rn

R

ϕ

A curve is defined by the map

γ : I 7→M ,

where I is an open interval on R. This labels each point along the curve

γ by a parameter λ ∈ I. The composite map φ ◦ γ defines xµ(λ), which

describes the curve in terms of coordinates on Rn.
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M

p
I

γ

Rn

ϕ

xµ(λ)

Defining vectors is a bit more subtle:

• Vectors are not arrows stretching between points.

• Instead, a vector is an object associated to a single point.

A better definition of vectors is in terms of tangent vectors along curves:

p

Vp

I

γ

R

f

f ◦ γ

The function along the curve is

f ◦ γ : I → R

and its rate of change is

d

dλ
(f ◦ γ(λ)) =

d

dλ
f(γ(λ)) ⇐ directional derivative
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The tangent vector to the curve γ at a point p is

Vp(f) =
d

dλ
f(γ(λ))

∣∣∣∣
p

≡ df

dλ
.

Since the function f is arbitrary, we can even write Vp ≡ d/dλ and think of

the vector as a linear map from the space of smooth functions on M to R.

This definition satisfies:

1) Linear: Vp(af + bg) = aVp(f) + bVp(g)

2) Leibniz: Vp(fg) = Vp(f)g + fVp(g)

⇒ The tangent vectors form a vector space Tp(M) (tangent space).

Proof. Consider

p

Vp

Up

γ

κ

If Vp, Up ∈ Tp(M), then Wp = aVp + bUp ∈ Tp(M).

Wp is a linear map and satisfies the Leibniz rule:

Wp(fg) = (aVp + bUp)(fg) = a [Vp(f)g + fVp(g)] + b [Up(f)g + fUp(g)]

= [aVp(f) + bUp(f)] g + f [aVp(g) + bUp(g)]

= Wp(f)g + fWp(g) .

The tangent vectors therefore span a vector space. �

Tp(M) is only defined at the point p. At a different point q, we have Tq(M).

It make no sense to add vectors at different points (different tangent spaces).

A collection of vectors at each point on the manifold defines a vector field.

The set of all tangent spaces of the manifold is the tangent bundle, T (M).
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Let us introduce a coordinate chart φ.

We then have

V (f) =
df

dλ
=

d

dλ
(f ◦ γ)

=
d

dλ

(
(f ◦ φ−1)︸ ︷︷ ︸
f(xµ)

◦ (φ ◦ γ)︸ ︷︷ ︸
xµ(λ)︸ ︷︷ ︸

f(xµ(λ))

)

and hence

V (f) =
dxµ

dλ

∂f

∂xµ
.

Since this holds for any f , we have

V =
d

dλ
=
dxµ

dλ

∂

∂xµ
.

↑ ↑
components coordinate basis

V µ ≡ dxµ

dλ
e(µ) ≡

∂

∂xµ
≡ ∂µ

Under a coordinate transformation, xµ → xµ
′
, we have

∂µ → ∂µ′ ≡
∂

∂xµ′
=
∂xµ

∂xµ′
∂

∂xµ
=
∂xµ

∂xµ′
∂µ .

Since the vector V = V µ∂µ should remain unchanged, we get

V µ∂µ = V µ′∂µ′ = V µ′ ∂x
µ

∂xµ′
∂µ ,

and hence

V µ′ =
∂xµ

′

∂xµ
V µ .
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2.3 Co-Vectors and Tensors

Having defined vectors on a manifold, we can now introduce the associated co-vectors (also

called dual vectors or one-forms or “vectors with a downstairs index”). Given an understanding

of vectors and co-vectors the generalization to tensors will be straightforward.

Examples of Co-Vectors:

1) Linear algebra

• vector: V =

(
V1

V2

)
∈ V

• co-vector: V T =
(
V1 V2

)
∈ V∗

• inner product: UTV =
(
U1 U2

)(V1

V2

)
=

2∑
i=1

UiVi ∈ R

2) Special relativity

• vector: V µ

• co-vector: Vµ = ηµνV
ν

• inner product: U · V =
3∑

µ=0

UµV
ν ∈ R

3) Quantum mechanics

• vector: |ψ〉 ∈ H
• co-vector: 〈φ| ∈ H∗

• inner product: 〈φ|ψ〉 ∈ C

Definition:

A co-vector is a linear map from a vector space V to R:

ω : V 7→ R , so that ω(V ) ∈ R .

The co-vectors ω live in the dual vector space, V∗.
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We are interested in the dual of the tangent space Tp(M), which we call T ∗p (M).

Let f : M 7→ R be a smooth function. We define the co-vector df by

df(V ) ≡ V (f) , with V ∈ Tp(M) .

Pick V = e(ν) = ∂ν (coordinate basis vector) and f = xµ (coordinate function):

dxµ(∂ν) ≡ ∂ν(x
µ) =

∂xµ

∂xν
= δµν .

We identify dxµ as the dual of the coordinate basis ∂µ.

The dual of a general basis vector satisfies

e(µ)(e(ν)) = δµν .

Any dual vector can be written as

ω = ωµe
(µ) ⇒ ω(e(µ)) = ωνe

(ν)(e(µ))

= ωνδ
ν
µ

= ωµ .

The action of a co-vector on a general vector then is

ω(V ) = ω(V µe(µ))

= ω(e(µ))V
µ

= ωµV
µ , as expected.

Ex: Show that df =
∂f

∂xµ
dxµ.

Under a change of coordinates, xµ → xµ
′
, the basis co-vectors transform as

dxµ
′
=
∂xµ

′

∂xµ
dxµ ,

and the components as

ωµ′ =
∂xµ

∂xµ′
ωµ , so that ω = ωµdxµ stays invariant.
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Definition:

A tensor of rank (m,n) is a multi-linear map

T : T ∗p (M)× . . .× T ∗p (M)︸ ︷︷ ︸
(m times)

×Tp(M)× . . .× Tp(M)︸ ︷︷ ︸
(n times)

7→ R .

In other words, given m co-vectors and n vectors, a tensor of type (m,n)

produces a real number, T (ω1, . . . , ωm, V1, . . . , Vn).

Acting on the basis (co)-vectors returns the components of the tensor

T µ1...µm
ν1...νn = T (e(µ1), . . . , e(µm), e(ν1), . . . , e(νn)) .

Under a change of coordinates, xµ → xµ
′
, these components transform as

T µ
′
1...µ

′
m
ν′1...ν

′
n

=
∂xµ

′
1

∂xµ1
· · · ∂x

µ′m

∂xµm
∂xν1

∂xν
′
1
· · · ∂x

νn

∂xν′n
T µ1...µm

ν1...νn .

Operations on tensors:

• Tensor product: (S ⊗ T )µ1...µpρ1...ρr
ν1...νqσ1...σs = Sµ1...µp

ν1...νqT
ρ1...ρr

σ1...σs .

• Contraction: Sµρσ = T µλρσλ .

• (Anti-)symmetrize: Sµν =
1

2
(Tµν + Tνµ) ≡ T(µν) ,

Aµν =
1

2
(Tµν − Tνµ) ≡ T[µν] .

This generalizes to higher-rank tensors. For example:

T (µν)ρ
σ =

1

2
(T µνρσ + T νµρσ)

T µ[ν|ρ|σ] =
1

2
(T µνρσ − T µσρν)

T µ(νρσ) =
1

3!

(
T µνρσ + T µρνσ + T µρσν + T µσρν + T µσνρ + T µνσρ

)
,

T µ[νρσ] =
1

3!

(
T µνρσ − T µρνσ + T µρσν − T µσρν + T µσνρ − T µνσρ

)
.
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2.4 The Metric Tensor

R3

p = γ(0)

q = γ(1)
The distance between p and q is

d(p, q) =

∫ 1

0

dλ

√
dx

dλ
· dx
dλ

↑
inner product

To define a distance on a curved manifold, we need to generalize the inner

product between two vectors.

An inner product maps a pair of vectors to a number. At a point p, we

write this map as

g : Tp(M)× Tp(M) 7→ R .

To make this (0, 2) tensor the metric tensor, we require:

1) It is symmetric: g(V, U) = g(U, V ).

2) It is non-degenerate: If g(U, V )|p = 0, for all Up ∈ Tp(M), then Vp = 0.

In a coordinate basis, we have

g = gµνdx
µ ⊗ dxν ,

which is often abbreviated as ds2 = gµνdx
µdxν.

1) Symmetric: gµν = gνµ

2) Non-degenerate: det(gµν) 6= 0

This allow us to define the inverse metric, gµν, via gµνgνσ = δµσ .
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Metric as a duality map:

A metric provides a map between vectors and co-vectors:

V µ → Vµ = gµνV
ν

ωµ → ωµ = gµνων

Distances on a manifold:

The length of a curve is

d(p, q) ≡
∫ 1

0

dλ
√
|g(V, V )| ,

where V is the tangent vector and

g(V, V ) > 0 =⇒ spacelike

g(V, V ) = 0 =⇒ null

g(V, V ) < 0 =⇒ timelike

Massive particles travel on timelike trajectories.

In that case, the proper time is dτ 2 = −gµνdxµdxν > 0.

Integrating this along the curve gives

τ =

∫ 1

0

dλ

√
−gµν

dxµ

dλ

dxν

dλ
.

Volumes and integration:

(later in the course)
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Chapter 3.

A FIRST LOOK AT GEODESICS

General relativity contains two key ideas: 1) “spacetime curvature tells matter how to move”

(equivalence principle) and 2) “matter tells spacetime how to curve” (Einstein equations). In

this chapter, we will develop the first idea a bit further.

3.1 Action of a Point Particle

The action of a relativistic point particle is

S = −m
∫

dτ , (for c ≡ 1)

where τ is proper time.

Check 1: In Minkowski, we have

dτ =
√
−ds2 =

√
dt2 − dx2 = dt

√
1−

(
dx

dt

)2

= dt
√

1− v2 ,

and the action becomes

S = −m
∫

dt
√

1− v2 v�1−−−→
∫

dt

(
−m+

1

2
mv2 + · · ·

)
.

Check 2: Using the weak field metric

ds2 = −(1 + 2Φ) dt2 + (1− 2Φ) dx2 ,

we get

S = −m
∫

dt
√

(1 + 2Φ)− (1− 2Φ)v2

≈
∫

dt

(
−m+

1

2
mv2 −mΦ + · · ·

)
.

↑
potential
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3.2 Geodesic Equation

Consider a curve xµ(λ) in a general spacetime, with metric gµν(t,x):

p

q

xµ(λ)

A geodesic is the preferred curve for which the action is an extremum.

This curve satisfies the geodesic equation

d2xµ

dτ 2
+ Γµαβ

dxα

dτ

dxβ

dτ
= 0 ,

where Γµαβ is the Christoffel symbol:

Γµαβ ≡
1

2
gµλ
(
∂αgβλ + ∂βgαλ − ∂λgαβ

)
.

Proof: The action is

S[xµ(λ)] = −m
∫ 1

0

dλ

√
−gµν

dxµ

dλ

dxν

dλ︸ ︷︷ ︸
≡ G

.

Consider xµ → xµ + δxµ, so that δS ≡ S[xµ + δxµ]− S[xµ].

We get δS = 0, for all δxµ, if

d

dλ

(
∂G

∂ẋµ

)
=
∂G

∂xµ
,

Euler-Lagrange
equation

cf.
d

dt

(
∂L

∂q̇

)
=
∂L

∂q

where ẋµ ≡ dxµ/dλ. The relevant derivatives are

∂G

∂ẋµ
= − 1

G
gµνẋ

ν ,

∂G

∂xµ
= − 1

2G
∂µgαβẋ

αẋβ .
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Using(
dτ

dλ

)2

= −gµνẋµẋν = G2 ⇒ dτ

dλ
= G ⇒ d

dλ
=
dτ

dλ

d

dτ
= G

d

dτ
,

the EL equation can be written as

d

dτ

(
gµν

dxν

dτ

)
− 1

2
∂µgαβ

dxα

dτ

dxβ

dτ
= 0 ,

and hence

gµν
d2xν

dτ 2
+ ∂αgµν

dxα

dτ

dxν

dτ
− 1

2
∂µgαβ

dxα

dτ

dxβ

dτ
= 0 .

Replacing ∂αgµν by 1
2(∂αgµν + ∂νgµα), we get

gµν
d2xν

dτ 2
+

1

2

(
∂αgµβ + ∂βgµα − ∂µgαβ

)dxα
dτ

dxβ

dτ
= 0 ,

and contracting the whole expression with gσµ gives

d2xσ

dτ 2
+

1

2
gσµ
(
∂αgµβ + ∂βgµα − ∂µgαβ

)
︸ ︷︷ ︸

≡ Γσαβ

dxα

dτ

dxβ

dτ
= 0 .

Relabelling indices, we get

d2xµ

dτ 2
+ Γµαβ

dxα

dτ

dxβ

dτ
= 0 , with Γµαβ ≡

1

2
gµλ
(
∂αgβλ + ∂βgαλ − ∂λgαβ

)
,

as required. �
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A simpler Lagrangian:

The same geodesic equation can also be derived from a simpler “Lagrangian”

L ≡ G2 = −gµν
dxµ

dλ

dxν

dλ
.

Starting from the Lagrangian, not the equation of motion, will allow us to

identify conserved quantities more easily.

• If L does not depend explicitly on λ, so that ∂L/∂λ = 0, then

dL
dλ

=
∂L
∂λ

+
dxµ

dλ

∂L
∂xµ

+
dẋµ

dλ

∂L
∂ẋµ

= ẋµ
d

dλ

(
∂L
∂ẋµ

)
+
dẋµ

dλ

∂L
∂ẋµ

using
∂L
∂xµ

=
d

dλ

(
∂L
∂ẋµ

)
=

d

dλ

(
∂L
∂ẋµ

ẋµ
)
,

⇒ 0 =
d

dλ

(
L − ∂L

∂ẋµ
ẋµ
)

This is the conserved “Hamiltonian”

H ≡ L− ∂L
∂ẋµ

ẋµ = gµν
dxµ

dλ

dxν

dλ
=

{−1 timelike (λ = τ)

0 null
.

• If gµν does not depend on xα∗ (ignorable coordinate), then ∂α∗gµν = 0.

The EL equation then implies

d

dλ

(
∂L
∂ẋα∗

)
=

∂L
∂xα∗

d

dλ

(
−2gα∗ν

dxν

dλ

)
= −∂α∗gµν

dxµ

dλ

dxν

dλ
= 0 ⇒ gα∗ν

dxν

dλ
= const.

“momentum”
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3.3 Newtonian Limit

1) particles are moving slowly,

2) the gravitational field is weak,

3) the field is also static.

1) implies that
dxi

dτ
� dt

dτ
, so that

d2xµ

dτ 2
+ Γµ00

(
dt

dτ

)2

= 0 . (*)

2) implies that
gµν = ηµν + hµν ,

gµν = ηµν − hµν ,
where |hµν| � 1.

To first order in hµν, we have

Γµ00 =
1

2
gµλ(∂0g0λ + ∂0g0λ − ∂λg00)

= −1

2
ηµj∂jh00 .

• The µ = 0 component of (*) then reads

d2t

dτ 2
= 0 ⇒ dt

dτ
= const.

• The µ = i component becomes

d2xi

dτ 2
=

1

2
∂ih00

(
dt

dτ

)2

.

Dividing by (dt/dτ)2 and defining h00 ≡ −2Φ, we get

d2xi

dt2
= −∂iΦ .
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3.4 Geodesics on Schwarzschild

The metric around a spherically symmetric star of mass M is

ds2 = −
(

1− 2GM

r

)
dt2 +

(
1− 2GM

r

)−1

dr2 + r2(dθ2 + sin2 θ dφ2) .

Let us look at the geodesics in this spacetime.

The Lagrangian L = −gµνẋµẋν is

L =

(
1− 2GM

r

)
ṫ2 −

(
1− 2GM

r

)−1

ṙ2 − r2θ̇2 − r2 sin2 θφ̇2 .

The Euler-Lagrange equation is

d

dλ

(
∂L
∂ẋµ

)
=

∂L
∂xµ

.

Since L is independent of t and φ, we have two conserved quantities:

d

dλ

(
∂L
∂ṫ

)
= 0 ⇒ E ≡ 1

2

∂L
∂ṫ

=

(
1− 2GM

r

)
ṫ (energy)

d

dλ

(
∂L
∂φ̇

)
= 0 ⇒ L ≡ −1

2

∂L
∂φ̇

= r2 sin2 θ φ̇ (angular momentum)

The EL equation for θ is

d

dλ

(
r2θ̇
)

= r2 sin θ cos θ φ̇2 ⇒ θ̈ =
cos θ

sin3 θ

L2

r4
− 2

ṙ

r
θ̇ .

We can pick θ = π/2 (θ̇ = 0): equatorial plane.

The constraint ε = −gµνẋµẋν = const then implies

ε =

(
1− 2GM

r

)
ṫ2 −

(
1− 2GM

r

)−1

ṙ2 − r2φ̇2 =

{
+1 timelike

0 null

=

(
1− 2GM

r

)−1

E2 −
(

1− 2GM

r

)−1

ṙ2 − L2

r2
,

which we can write as

− E2 + ṙ2 +

(
1− 2GM

r

)(
L2

r2
+ ε

)
= 0 .
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⇒ Particle in a potential:

1

2
ṙ2 + V (r) = E ,

where E ≡ E2/2 and

V (r) ≡ εc2

2
− εGM

r
+
L2

2r2
− L2GM

c2r3

1) Newtonian potential

2) Centrifugal potential

3) GR correction
1) 2) 3)

• Massive particles (ε = 1): [for L = 5 and GM = 1]

0 5 10 15 20 25 30
0.4
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r

V
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)

rc,− rc,+

• Massless particles (ε = 0): [for GM = 1]
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−2
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[L

2
/
5
4]

rc
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3.5 Circular Orbits

The particle can move in a circular orbit r = rc when dV/dr = 0.

Maxima (minima) are unstable (stable) orbits.

• Massless particles (ε = 0):

V (r) =
L2

2r2
− L2GM

r3
⇒ dV

dr
= −L

2

r3
+

3L2GM

r4
= 0

⇒ rc = 3GM (photon sphere).

Note: there are no circular orbits for massless particles in Newtonian gravity.

The evolution depends on how E compares to Vmax = V (rc):

◦ For E < Vmax, light emitted at r < rc cannot escape to infinity, while light coming from

r � rc will bounce off the angular momentum barrier and return to infinity.

◦ For E > Vmax, the energy is greater than the angular momentum barrier, so that light

emitted from r < rc can escape, while light coming from r � rc can reach r = 0.

• Massive particles (ε = 1):

V (r) =
1

2
− GM

r
+
L2

2r2
− L2GM

r3
⇒ dV

dr
=
GM

r2
− L2

r3
+

3L2GM

r4
= 0

⇒ GMr2
c − L2rc + 3GML2 = 0

⇒ rc,± =
L2 ±

√
L4 − 12(GM)2L2

2GM
.

0 2 4 6 8 10

1

5

10

50

100

L

r c
,±

3GM

6GM

√
12GM rc,+

rc,−
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For L >
√

12GM , stable (unstable) orbit at rc,+ (rc,−).

For L =
√

12GM , the two solutions merge into is a single orbit at

rc = 6GM (ISCO).

For L <
√

12GM , there is no stable circular orbit.

3.6 Precession of Mercury

GR explains the precession of the perihelion of Mercury:

Mercury’s orbit

Precession

To show this, we have to derive r(φ).

Recall that
1

2

(
dr

dλ

)2

+

(
1

2
− GM

r
+
L2

2r2
− L2GM

r3

)
= E .

Using (
dr

dλ

)2

=

(
dφ

dλ

)2(
dr

dφ

)2

=
L2

r4

(
dr

dφ

)2

,

this can be written as(
dr

dφ

)2

+
r4

L2
− 2GM

L2
r3 + r2 − 2GMr =

2E
L2
r4 .
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Let u ≡ L2

GMr
, where u = 1 corresponds to a Newtonian circular orbit.

This gives (
du

dφ

)2

+
L2

(GM)2
− 2u+ u2 − 2(GM)2

L2
u3 =

2EL2

(GM)2
.

Differentiating with respect to φ:

d2u

dφ2
− 1 + u =

3(GM)2

L2
u2 .

Write u = u0 + u1, where

d2u0

dφ2
− 1 + u0 = 0 ⇒ u0 = 1 + e cosφ (Newtonian)

d2u1

dφ2
− 1 + u1 =

3(GM)2

L2
u2

0

=
3(GM)2

L2
(1 + e cosφ)2

=
3(GM)2

L2

[(
1 +

1

2
e2

)
+ 2e cosφ+

1

2
e2 cos 2φ

]
.

⇒ u1 =
3(GM)2

L2

[(
1 +

1

2
e2

)
+ eφ sinφ− 1

6
e2 cos 2φ

]
.

↑
only non-periodic term

(leading to precession)

Hence, we get

u = 1 + e cosφ+ α eφ sinφ , α ≡ 3(GM)2

L2
� 1

≈ 1 + e cos[(1− α)φ] .

During each orbit, the perihelion therefore advances by an angle

∆φ = 2πα =
6π(GM)2

L2
.
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An ordinary ellipse satisfies L2 ≈ GM(1− e2)a and hence

∆φ =
6πGM

c2(1− e2)a
.

For Mercury, the relevant parameters are

GM�
c2

= 1.48× 103 m ,

a = 5.79× 1010 m ,

e = 0.2056 ,

which gives

∆φMercury = 5.01× 10−7 radians/orbit = 0.103 ′′/orbit .

Using TMercury = 88 days, we also get

∆φMercury = 43.0 ′′/century .

The observed precession is

∆φMercury = 575 ′′/century = 532 ′′/century + 43 ′′/century .

↑ ↑
other planets GR

Success!!
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Chapter 4.

SPACETIME CURVATURE

So far, we have studied how particles move in a curved spacetime, but we have not yet shown

explicitly how this spacetime curvature arises. This is the subject of the next two chapters.

In this chapter, we will develop the necessary mathematical formalism to describe spacetime

curvature. In the next chapter, we will then use this to derive an equation that shows how

matter and energy source the curvature of the spacetime.

4.1 Covariant Derivative

Ordinary partial derivatives aren’t good enough.

Consider ∂λT
µ. This transforms as

∂λ′T
µ′ =

∂T µ
′

∂xλ′
=
∂xσ

∂xλ′
∂

∂xσ

(
∂xµ

′

∂xν
T ν(x)

)
=
∂xσ

∂xλ′
∂xµ

′

∂xν
∂σT

ν +

(
∂xσ

∂xλ′
∂2xµ

′

∂xσ∂xν

)
T ν .

↑
non-tensorial

⇒ Find a new “covariant derivative”, ∇λT
µ, that transforms like a tensor:

∇λ′T
µ′ =

∂xσ

∂xλ′
∂xµ

′

∂xν
∇σT

ν .

Let V be the tangent vector along a curve γ.

The covariant derivative of tensors along the curve satisfies:

1) Linearity: ∇V (T + S) = ∇V T +∇V S

2) Leibniz: ∇V (T ⊗ S) = (∇V T )⊗ S + T ⊗ (∇V S)

3) Additivity: ∇fV+gWT = f∇V T + g∇WS

4) Action on scalars: ∇V (f) = V (f)

5) Action on basis vectors: ∇βeα = Γµβαeµ, where ∇β ≡ ∇eβ .

Γµβα are called connection coefficients (or Christoffel symbols).
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Say T = T µeµ and V = V νeν. The covariant derivative of T is

∇V T = ∇V (T µeµ)

= ∇V (T µ)eµ + T µ(∇V eµ) (using 2)

= V (T µ)eµ + T µ∇V νeνeµ (using 4)

= V νeν(T
µ)eµ + T µV ν∇eνeµ (using 3)

= V ν(∂νT
µ)eµ + T µV νΓλνµeλ (using 5)

= V ν(∂νT
µ + ΓµνβT

β)eµ .

The components of the resulting (1, 1) tensor are

∇νT
µ = ∂νT

µ + ΓµνλT
λ ,

where we have defined (∇T )ν
µ ≡ ∇νT

µ.

Under a coordinate transformation, we have

∇µ′T
ν′ = ∂µ′T

ν′ + Γν
′
µ′α′T

α′

=
∂xµ

∂xµ′
∂µ

(
∂xν

′

∂xν
T ν
)

+ Γν
′
µ′α′

∂xα
′

∂xα
T α

=
∂xµ

∂xµ′
∂xν

′

∂xν
∂µT

ν +
∂xµ

∂xµ′
∂2xν

′

∂xµ∂xν
T ν + Γν

′
µ′α′

∂xα
′

∂xα
T α

=
∂xµ

∂xµ′
∂xν

′

∂xν
∇µT

ν −
(
∂xµ

∂xµ′
∂xν

′

∂xν
Γνµα −

∂xµ

∂xµ′
∂2xν

′

∂xµ∂xα
− Γν

′
µ′α′

∂xα
′

∂xα

)
︸ ︷︷ ︸

= 0

T α .

⇒ ∇µT
ν is a tensor if

Γν
′
µ′α′ =

∂xµ

∂xµ′
∂xν

′

∂xν
∂xα

∂xα′
Γνµα −

∂xµ

∂xµ′
∂xα

∂xα′
∂2xν

′

∂xµ∂xα
.

⇒ Γνµα are not the components of a (1, 2) tensor.

31



What is the covariant derivative of a co-vector?

Consider f ≡ ωνT
ν. Since ∇µf = ∂µf , we have

∇µ(ωνT
ν) = ∂µ(ωνT

ν)

= (∂µων)T
ν + ων(∂µT

ν) ,

or ∇µ(ωνT
ν) = (∇µων)T

ν + ων(∇µT
ν)

= (∇µων)T
ν + ων(∂µT

ν + ΓνµαT
α) .

Comparing these, we get

(∇µων)T
ν =

(
∂µων − Γαµνωα

)
T ν ,

so that

∇µων = ∂µων −Γαµνωα .

This generalizes to arbitrary tensors. For example:

∇µTαβ
γ = ∂µTαβ

γ + ΓγµλTαβ
λ−ΓλµαTλβ

γ − ΓλµβTαλ
γ .

So far, we have not used the metric gµν to define ∇. Now we will.

The Levi-Civita connection is the unique connection that is

1) torsion free: T αµν ≡ Γαµν − Γανµ = 0

2) metric compatible: ∇λgµν = 0

Let us build the Levi-Civita connection by writing ∇λgµν = 0 three times:

∇λgµν = ∂λgµν − Γσλµgσν − Γσλνgµσ = 0 , (a)

∇µgνλ = ∂µgνλ − Γσµνgσλ − Γσµλgνσ = 0 , (b)

∇νgλµ = ∂νgλµ − Γσνλgσµ − Γσνµgλσ = 0 . (c)

(a)− (b)− (c) gives

∂λgµν − ∂µgνλ − ∂νgλµ + 2Γσµνgσλ = 0

⇒ Γαµν =
1

2
gαλ (∂µgνλ + ∂νgλµ − ∂λgµν)
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From flat to curved spacetime

Relativistic equations must be constructed with covariant derivatives, not par-

tial derivatives. SR to GR: ∂µ → ∇µ.

For example: ∂νF
µν = Jµ ⇒ ∇νF

µν = Jµ ,

∂νT
µν = 0 ⇒ ∇νT

µν = 0 .

↑
coupling to gravity

4.2 Parallel Transport and Geodesics

In Euclidean geometry, “parallel lines stay parallel.” How does this generalized to curved space?

What do “stay” and “parallel” mean on a curved manifold? How do we even compare vectors

at different points on the manifold which live in distinct tangent spaces?

In flat spacetime, parallel transport of a vector V µ along a curve xµ(λ) means

dV µ

dλ
=
dxν

dλ
∂νV

µ = 0 (flat spacetime).

This generalizes to curved spacetime, if ∂ → ∇:

DV µ

Dλ
≡ dxν

dλ
∇νV

µ = 0 (curved spacetime).

or
dV µ

dλ
+ Γµσν

dxσ

dλ
V ν = 0 .

⇒ Γµσν determines how the components of a vector change along a curve.

A geodesic is a curve along which the tangent vector dxµ/dλ is parallel trans-

ported:

V µ =
dxµ

dλ
⇒ V ν∇νV

µ = 0 ⇒ d2xµ

dλ2
+ Γµσν

dxσ

dλ

dxν

dλ
= 0 ,

which is the same as our old geodesic equation if we identify Γµσν with the

Levi-Civita connection.
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4.3 Symmetries and Killing Vectors

The importance of symmetries in physics cannot be overstated. General relativity is no ex-

ception. We will see that the Einstein equations are rather complicated nonlinear differential

equations that can only be solved analytically in situations with a fair amount of symmetry.

Consider xµ 7→ x̃µ(x) as an active transformation between different points on

the manifold. Nearby points are connected by infinitesimal transformations:

xµ 7→ x̃µ(x) = xµ + δxµ

≡ xµ − V µ .

The metric changes as

δgµν = ∇µVν +∇νVµ .

Proof Recall that

gµν(x) 7→ g̃µν(x̃) =
∂xρ

∂x̃µ
∂xλ

∂x̃ν
gρλ(x) ,

where
∂x̃µ

∂x̃ρ
= δµρ − ∂ρV µ ⇒ ∂xρ

∂x̃µ
= δρµ + ∂µV

ρ .

Hence, we get

g̃µν(x̃) = (δρµ + ∂µV
ρ)(δλν + ∂νV

λ)gρλ(x)

= gµν(x) + ∂µV
ρgρν(x) + ∂νV

λgµλ(x) ,

Writing

gµν(x) = gµν(x̃+ V ) = gµν(x̃) + V λ∂λgµν(x) ,

we get

δgµν ≡ g̃µν(x̃)− gµν(x̃)

= V λ∂λgµν + ∂µV
ρgρν + ∂νV

λgµλ

= V λ∂λgµν + ∂µ(V ρgρν) + ∂ν(V
λgµλ)− V ρ∂µgρν − V λ∂νgµλ

= ∇µVν +∇νVµ + ΓαµνVα + ΓανµVα − V λ(∂µgνλ + ∂νgµλ − ∂λgµν)
= ∇µVν +∇νVµ ,

as required. �
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For a symmetry transformation, we have

δgµν = 0 ⇒ ∇µVν +∇νVµ = 0 ,
Killing’s
equation

where V µ is a Killing vector.

Finding all Killing vectors of a metric gµν can be hard.

Some useful facts:

• If ∂α∗gµν = 0, then ∂α∗ is a Killing vector;

• If K and Z are Killing vectors, then aK + bZ is a Killing vector;

• If K and Z are Killing vectors, then [K,Z] is a Killing vector.

Example Consider R3 : ds2 = dx2 + dy2 + dz2.

Three obvious Killing vectors are X = ∂x, Y = ∂y and Z = ∂z,

with components

Xµ = (1, 0, 0)

Y µ = (0, 1, 0)

Zµ = (0, 0, 1)

⇐ translations along x, y and z.

Going to polar coordinates:

x = r sin θ cosφ ,

y = r sin θ sinφ ,

z = r cos θ .

we get

ds2 = dr2 + r2dθ2 + r2 sin2 θ dφ2 .

Another Killing vector is

R = ∂φ = −y∂x + x∂y ⇒ Rµ = (−y, x, 0) .

By permuting the coordinates, we get

Rµ = (−y, x, 0)

Sµ = (z, 0,−x)

T µ = (0,−z, y)

⇐ rotations around z, y and x.

Exercise: Check that the above vectors indeed solve Killing’s equation.
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Noether’s theorem: Symmetries =⇒ conserved quantities.

What are the conserved quantities associated to Killing vectors?

Consider a geodesic with tangent vector P µ = dxµ/dλ.

Claim: The quantity Q = KµPµ is conserved along the geodesic.

Proof: Consider the directional derivative of Q:

D(KνPν)

Dλ
= P µ∇µ(KνPν) = P µP ν∇µKν + (P µ∇µP

ν)Kν

=
1

2
P µP ν(∇µKν +∇νKµ)

= 0 .

Examples:

• Time translations: K = ∂t Q = KµPµ = P0 (energy)

• Spatial translations: K = ∂i Q = KµPµ = Pi (momentum)

• Rotations: K = ∂φ Q = KµPµ = Pφ (angular momentum)

4.4 The Riemann Tensor

On a curved manifold, parallel transport is path dependent:

V(1) V(2)
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Consider an infinitesimal parallelogram:

V µ

Aρ

Bσ

V µ
(1)

V µ
(2)

The change of the vector along a side δxρ is

δV µ =
dV µ

dλ
δλ = −ΓµνρV

ν dx
ρ

dλ
δλ using

DV µ

Dλ
=
dV µ

dλ
+ ΓµνρV

ν dx
ρ

dλ
δλ = 0

= −ΓµνρV
νδxρ .

Parallel transport along the two paths gives

δV µ
(1) = −Γµνρ(x)V ν(x)Aρ − Γµνρ(x+ A)V ν(x+ A)Bρ ,

δV µ
(2) = −Γµνρ(x)V ν(x)Bρ − Γµνρ(x+B)V ν(x+B)Aρ ,

The difference is

δV µ ≡ δV µ
(1) − δV

µ
(2)

=
∂(ΓµνρV

ν)

∂xσ
BσAρ − ∂(ΓµνρV

ν)

∂xσ
AσBρ + · · ·

= (∂σΓµνρV
ν + Γµνρ∂σV

ν − ∂ρΓµνσV ν − Γµνσ∂ρV
ν)AρBσ .

Using ∂σV
ν = −ΓνσλV

λ, this becomes

δV µ = Rµ
νρσA

ρBσV ν ,

where we have defined the Riemann tensor

Rµ
νρσ ≡ ∂ρΓ

µ
νσ − ∂σΓµνρ + ΓµρλΓ

λ
νσ − ΓµσλΓ

λ
νρ .

• Note: we have not used the metric yet!
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Alternatively: consider

[∇µ,∇ν]V
ρ = ∇µ∇νV

ρ −∇ν∇µV
ρ

= ∂µ(∇νV
ρ)− Γλµν∇λV

ρ + Γρµσ∇νV
σ − (µ↔ ν)

= ∂µ∂νV
ρ + (∂µΓρνσ)V σ + Γρνσ∂µV

σ − Γλµν∂λV
ρ − ΓλµνΓ

ρ
λσV

σ

+ Γρµσ∂νV
σ + ΓρµσΓσνλV

λ − (µ↔ ν)

= (∂µΓρνσ − ∂νΓρµσ + ΓρµλΓ
λ
νσ − ΓρνλΓ

λ
µσ)V σ − 2Γλ[µν]∇λV

ρ .

We have therefore found that

[∇µ,∇ν]V
ρ = Rρ

σµνV
σ − T λµν∇λV

ρ ,

which, for the Levi-Civita connection, becomes

[∇µ,∇ν]V
ρ = Rρ

σµνV
σ Ricci

identity

It is also instructive to give index-free definitions:

The torsion tensor is a map from two vector fields to a third vector field:

T (X, Y ) = ∇XY −∇YX − [X, Y ] ,

where [X, Y ] is the commutator.

The Riemann tensor is a map from three vector fields to a fourth vector

field:

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z .

Exercise: Show that these expressions reduce to our previous definitions when

we write them in components. [R(X, Y )Z = Rρ
σµνX

µY νZσ]
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Symmetries of the Riemann tensor

Only 20 of the 44 = 256 components of Rµ
νρσ are independent.

Many components of Rµνρσ = gµλR
λ
νρσ are related by symmetries:

Rµνρσ = −Rνµρσ ,

Rµνρσ = −Rµνσρ ,

Rµνρσ = Rρσµν ,

Rµνρσ +Rµρσν +Rµσνρ = 0 .

Proofs of these identities can be found in Sean Carroll’s book.

In addition, we have the Bianchi identity

∇λRµνρσ +∇νRλµρσ +∇µRνλρσ = 0 . (*)

Analog of the homogeneous Maxwell equation: ∂λFµν + ∂νFλµ + ∂µFνλ = 0.

Ricci tensor and Ricci scalar

• The unique contraction of the Riemann tensor is the Ricci tensor:

Rµν ≡ Rλ
µλν = ∂λΓ

λ
µν − ∂νΓλµλ + ΓλλρΓ

ρ
µν − ΓρµλΓ

λ
νρ .

• The trace of the Ricci tensor is the Ricci scalar:

R = Rµ
µ = gµνRµν .

Example Consider a 2-sphere with ds2 = `2(dθ2 + sin2 θ dφ2).

The nonzero Christoffel symbols are

Γθφφ = − sin θ cos θ , Γφθφ = Γφφθ = cot θ .

The nonzero components of the Ricci tensor are

Rθθ = 1 , Rφφ = sin2 θ ,

and the Ricci scalar is R = gθθRθθ + gφφRφφ =
2

`2
.
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4.5 Geodesic Deviation

In Euclidean space, parallel lines will never meet. Similarly, in Minkowski spacetime, initially

parallel geodesics will stay parallel forever. In a curved space(time), on the other hand, initially

parallel geodesics do not stay parallel. This gives us another way to measure curvature.

Consider two geodesics:

Uµ

Bµ

• Newtonian gravity:

d2xi

dt2
= −∂iΦ(xj)

d2(xi + bi)

dt2
= −∂iΦ(xj + bj)

⇒ d2bi

dt2
= −∂j∂iΦ bj

↑
tidal tensor

• General relativity:

V µ ≡ DBµ

Dτ
= U ν∇νB

µ =
dBµ

dτ
+ ΓµσνU

νBσ , where Uµdx
µ

dτ
,

Aµ ≡ D2Bµ

Dτ 2
= U ν∇νV

µ =
dV µ

dτ
+ ΓµσνU

νV σ .

Using the geodesic equation for the two paths, we find (see lecture notes)

D2Bµ

Dτ 2
= −Rµ

νρσU
νUσBρ Geodesic deviation

equation

⇒ The Riemann tensor plays the role of the tidal tensor.
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Chapter 5.

THE EINSTEIN EQUATION

We will determine the Einstein equation in two different ways. First, we will “guess” it. Then,

we will construct an action for the metric and show that corresponding equation of motion

leads to the same Einstein equation.

5.1 Einstein’s Field Equation

Newtonian gravity: GR:

Tidal tensor: ∂i∂jΦ Riemann tensor: Rµνστ

Poisson eqn: ∇2Φ = ∂i∂iΦ = 4πGρ Einstein eqn: Rµν ≡ Rλ
µλν = ?

↑ ↑ ↑ ↑
trace T00 trace Tµν

A first and second guess

Einstein’s first guess was

Rµν
?
= κTµν .

This doesn’t work because the Bianchi identity implies

0 = gλσgµρ (∇λRµνρσ +∇νRλµρσ +∇µRνλρσ)

= ∇σRνσ −∇νR +∇ρRνρ ,

so that

∇µRµν =
1

2
∇νR . (*)

⇒ ∇µRµν 6= 0 would be inconsistent with ∇µTµν = 0 (which must hold!)

However, (*) implies

0 = ∇µ

(
Rµν −

1

2
gµνR

)
≡ ∇µGµν ⇐ Einstein

tensor

An improved guess therefore is

Gµν
?
= κTµν ⇐ Einstein

equation
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Newtonian limit

Let us show that this has the correct Newtonian limit.

The trace of the Einstein equation is R = −κT .

⇒ The trace-reversed Einstein equation then is

Rµν = κ

(
Tµν −

1

2
gµνT

)
.

In the Newtonian limit, we have

T00 = ρ and T = g00T00 ≈ −T00 = −ρ .

Hence, we get

R00 =
1

2
κρ .

For gµν = ηµν + hµν, we have

R00 = Ri
0i0 = ∂iΓ

i
00 − ∂0Γ

i
i0 + ΓijλΓ

λ
00 − Γi0λΓ

λ
j0

= ∂iΓ
i
00 .

The relevant Christoffel symbol is

Γi00 =
1

2
giλ(∂0g0λ + ∂0g0λ − ∂λg00)

= −1

2
δij∂jh00 .

We therefore have

R00 = −1

2
∇2h00 ⇒ ∇2h00 = −κρ .

Recall that h00 = −2Φ (geodesic equation or equivalence principle). We there-

fore reproduce the Poisson equation if

κ = 8πG ⇒ ∇2Φ = 4πGρ .
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The Einstein equation

The final form of the Einstein equation then is

Gµν = 8πGTµν .

This is one of the most beautiful equations ever written down. It describes a wide range of

phenomena, from planetary orbits to the expansion of the universe and black holes.

• 10 equations − 4 constraints (∇µGµν = 0) = 6 independent equations

• Non-linear equations of gµν: can’t superpose solutions!

• Curvature is sourced by Tµν: energy and momentum (pressure)!

5.2 Einstein-Hilbert Action

Alternatively, derive the Einstein equation from an action.

The unique action for gravity is the Einstein-Hilbert action:

S =

∫
d4x
√−gR ,

where g = det gµν. Note that

d4x→ d4x′ = det

(
∂xµ

′

∂xµ

)
d4x ,

det gµν → det gµ′ν′ = det

(
∂xµ

∂xµ′
∂xν

∂xν′
gµν

)
=

[
det

(
∂xµ

∂xµ′

)]2

det gµν ,

so that d4x
√−g is invariant under a coordinate transformation.

Example: In Cartesian coordinates,
√−g d4x = dt dx dy dz, while in polar

coordinates this becomes
√−g d4x = r2 sin θ dt dr dθ dφ.

Writing R = gµνRµν and varying S with respect to the (inverse) metric gives:

δS =

∫
d4x
[

(δ
√−g)gµνRµν︸ ︷︷ ︸

1

+
√−g δgµνRµν︸ ︷︷ ︸

2

+
√−g gµνδRµν︸ ︷︷ ︸

3

]
.

• Term 3 is a total derivative:

gµνδRµν = ∇µX
µ , with Xµ ≡ gρνδΓµρν − gµνδΓρνρ ,

and can therefore be dropped.
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• Let us look at Term 1:

Any diagonalizable matrix M obeys

ln(detM) = Tr(lnM) ⇒ 1

detM
δ(detM) = Tr(M−1δM) .

Applying this to the metric, we get

δg = g(gµνδgµν)

= −g(gµνδg
µν) [using δ(gµνg

µν) = δ(δµµ) = 0]

Hence, we find

δ
√−g = − 1

2
√−g δg

=
g

2
√−g gµνδg

µν

= −1

2

√−g gµνδgµν .

• Substituting this into δS, we find

δS =

∫
d4x
√−g

(
Rµν −

1

2
gµνR

)
δgµν .

⇒ δS = 0 implies the vacuum Einstein equation:

Rµν −
1

2
gµνR = 0 .

5.3 Including Matter

To get the non-vacuum Einstein equation, we add an action for matter:

S =
1

2κ

∫
d4x
√−gR + SM .

Varying this action with respect to the metric gives

δS =
1

2

∫
d4x
√−g

(
1

κ
Gµν − Tµν

)
δgµν , (**)

where we have defined

Tµν ≡ −
2√−g

δSM
δgµν

energy-momentum
tensor
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⇒ δS = 0 then implies

Gµν = κTµν ,

where κ = 8πG is fixed by the Newtonian limit (as before).

• Recall that xµ → xµ − V µ implies δgµν = ∇µVν +∇νVµ.

Substituting this into (**) gives

δS =

∫
d4x
√−g

(
1

κ
Gµν − Tµν

)
∇µV ν

= −
∫

d4x
√−g

(
1

κ
∇µGµν −∇µTµν

)
V ν ,

Since ∇µGµν = 0 (Bianchi), we get δS = 0 (diffeomorphism invariance) iff

∇µTµν = 0 ⇐ covariantly conserved.

• Recall that (or see Appendix A)

Tµν =

(
T00 T0j

Ti0 Tij

)
=

(
energy density momentum density

energy flux stress tensor

)
.

Examples:

• Scalar field

S =

∫
d4x
√−g

(
−1

2
gµν∇µφ∇νφ−

1

2
m2φ2

)
,

Tµν = ∇µφ∇νφ−
1

2
gµν
(
∇ρφ∇ρφ+m2φ2

)
.

• Electromagnetic field

S = −1

4

∫
d4x
√−ggµσgντFστFµν ,

Tµν = gρσFµρFνσ −
1

4
gµνF

ρσFρσ .

• Perfect fluid

Tµν = (ρ+ P )UµUν + Pgµν
Uµ=(1,0,0,0)−−−−−−−−→ T µν =


−ρ 0 0 0

0 P 0 0

0 0 P 0

0 0 0 P

 .
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5.4 The Cosmological Constant

Since ∇µgµν = 0, we can add Λgµν to Gµν without affecting ∇µTµν = 0.

The modified Einstein equation is

Gµν + Λgµν = 8πGTµν .

which comes from the following action

S =
1

16πG

∫
d4x
√−g(R− 2Λ) + SM .

5.5 Some Vacuum Solutions

In general, the Einstein equation is hard to solve. A few exact solutions nevertheless exist

in situations with a large amount of symmetry. We will first consider the vacuum Einstein

equation with a cosmological constant.

Let Tµν = 0, so that

Rµν −
1

2
gµνR = −Λgµν .

Taking the trace, we get R = 4Λ and hence

Rµν = Λgµν .

5.5.1 Schwarzschild Solution

We start with Λ = 0⇒ Rµν = 0.

The trivial solution is Minkowski space

ds2 = −dt2 + dx2 .

A more interesting solution is the Schwarzschild solution

ds2 = −
(

1− 2GM

r

)
dt2 +

(
1− 2GM

r

)−1

dr2 + r2(dθ2 + sin2 θ dφ2) .

Let’s derive it.
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We start with Birkhoff’s theorem (see Problem Set):

Any spherically symmetric solution of the vacuum field equations must be

static.

The most general ansatz for a static, spherically symmetric line element is

ds2 = −e2α(r)dt2 + e2β(r)dr2 + e2γ(r)r2dΩ2 .

Defining

r̄ ≡ eγ(r)r ⇒ dr̄ =

(
1 + r

dγ

dr

)
eγdr ,

we get

ds2 = −e2α(r)dt2 +

(
1 + r

dγ

dr

)−2

e2β(r)−2γ(r)dr̄2 + r̄2dΩ2 .

Performing the following relabelings

r̄ → r ,(
1 + r

dγ

dr

)−2

e2β(r)−2γ(r) → e2β ,

we can write

ds2 = −e2α(r)dt2 + e2β(r)dr2 + r2dΩ2 .

The associated Christoffel symbols are

Γttr = ∂rα Γrtt = e2(α−β)∂rα Γrrr = ∂rβ

Γθrθ =
1

r
Γrθθ = −re−2β Γφrφ =

1

r

Γrφφ = −re−2β sin2 θ Γθφφ = − sin θ cos θ Γφθφ =
cos θ

sin θ
.

Substituting this into the definition of the Ricci tensor

Rµν = ∂λΓ
λ
µν − ∂νΓλµλ + ΓλλρΓ

ρ
µν − ΓρµλΓ

λ
νρ ,

we get
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Rtt = e2(α−β)

[
∂2
rα + (∂rα)2 − ∂rα∂rβ +

2

r
∂rα

]
Rrr = −∂2

rα− (∂rα)2 + ∂rα∂rβ +
2

r
∂rβ

Rθθ = e−2β
[
r(∂rβ − ∂rα)− 1

]
+ 1

Rφφ = sin2 θRθθ .

To satisfy the vacuum Einstein equation, these components must all vanish.

We then have

0 = e2(β−α)Rtt +Rrr =
2

r
(∂rα + ∂rβ) ,

so that α = −β + c, where c is an arbitrary constant.

Defining t→ e−ct, we have

α = −β .

Using Rθθ = 0, we get

e2α(2r∂rα + 1) = 1 ⇒ ∂r(re
2α) = 1 .

Integrating the last expression, we find

e2α = 1− RS

r
,

where RS is an integration constant.

What is RS? Recall that

gtt = −(1 + 2Φ) , with Φ = −GM
r

,

and hence we identify the Schwarzschild radius as RS ≡ 2GM .

The final form of the Schwarzschild metric then is

ds2 = −
(

1− 2GM

r

)
dt2 +

(
1− 2GM

r

)−1

dr2 + r2dΩ2 .
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5.5.2 De Sitter Space

Now, let Λ > 0. We try the ansatz

ds2 = −e2α(r)dt2 + e−2α(r)dr2 + r2dΩ2 .

The corresponding Ricci tensor is

Rtt = e4α

[
∂2
rα + 2(∂rα)2 +

2

r
∂rα

]
= −e4αRrr ,

Rφφ = sin2 θ

[
1− e2α

(
1 + 2r∂rα

)]
= sin2 θRθθ .

This satisfies Rµν = Λgµν if

∂2
rα + 2(∂rα)2 +

2

r
∂rα = −e−2α(r)Λ ,

1− e2α
(

1 + 2r∂rα
)

= r2Λ ,

which is solved by

e2α = 1− r2

R2
, where R2 ≡ 3/Λ .

The corresponding metric is

ds2 = −
(

1− r2

R2

)
dt2 +

(
1− r2

R2

)−1

dr2 + r2dΩ2 dS

5.5.3 Anti-De Sitter Space

Finally, we can also have Λ < 0. In that case, we get

ds2 = −
(

1 +
r2

R2

)
dt2 +

(
1 +

r2

R2

)−1

dr2 + r2dΩ2 AdS

where R2 ≡ −3/Λ.
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Chapter 6.

BLACK HOLES

One of the most remarkable predictions of GR is the existence of black holes. These are

regions of spacetime from which nothing, not even light, can escape.

6.1 Schwarzschild Black Holes

In the previous chapter, we derived the Schwarzschild solution:

ds2 = −
(

1− 2GM

r

)
dt2 +

(
1− 2GM

r

)−1

dr2 + r2(dθ2 + sin2 θ dφ2) .

What is going on at r = 0 and r = 2GM?

Singularities

To decide whether a singularity is real or not, look at scalar curvatures:

R = gµνRµν = 0 ,

RµνRµν = 0 ,

RµνρσRµνρσ =
48G2M 2

r6
.

⇒ r = 0 is a real singularity.

⇒ r = 2GM is just a coordinate singularity.

Nevertheless, r = 2GM is an interesting place!
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Event horizon

Consider an object of mass M⊕ = 6× 1024 kg (Earth).

This gives RS,⊕ = 2GM⊕/c2 = 8.9 mm:

Similarly, for M� = 2× 1030 kg (Sun) ⇒ RS,� ≈ 3 km.

• For ordinary planets or stars, RS � R is not part of the spacetime.

• An object with R� RS is a black hole.

Near horizon limit: Rindler space

Let us look at the near horizon geometry by defining

r = 2GM + η ,

with 0 < η � 2GM .

Using

1− 2GM

r
= 1− 2GM

2GM + η
= 1−

(
1 +

η

2GM

)−1

≈ η

2GM
+O(η2) ,

r2 = (2GM + η)2 ≈ (2GM)2 +O(η) ,

the metric becomes

ds2 = − η

2GM
dt2 +

2GM

η
dη2︸ ︷︷ ︸

Rindler space

+ (2GM)2dΩ2︸ ︷︷ ︸
S2

.

Defining

ρ2 ≡ 8GMη ⇒ dη2 =
q2dq2

(4GM)2
=

η

2GM
dq2 ,

the metric of Rindler space becomes

ds2 = −
( ρ

4GM

)2

dt2 + dρ2 .

51



Using the transformation

T ≡ ρ sinh

(
t

4GM

)
X ≡ ρ cosh

(
t

4GM

) ⇔
X2 − T 2 = ρ2

T

X
= tanh

(
t

4GM

)
the Rindler metric becomes

ds2 = −dT 2 + dX2 ,

with X ∈ (0,∞) and −X < T < X.

⇒ Rindler space is just a patch of Minkowski space in disguise:

X

T

ρ
=

0
(r

=
2G

M
)

t =
+
∞

t =
−∞

← t = const

← ρ = const

• The event horizon is a null surface, not timelike as for a star.

• Nothing special at r = 2GM : can extend coordinates to T,X ∈ R.
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Eddington–Finkelstein coordinates

Let us play the same game for the full spacetime.

To motivate the choice of new coordinates, consider radial null geodesics:

ds2 = 0 = −
(

1− 2GM

r

)
dt2 +

(
1− 2GM

r

)−1

dr2 .

and hence
dt

dr
= ±

(
1− 2GM

r

)−1
+ : outgoing

− : ingoing

⇒ Light cones “close up” as they approach r = 2GM :

r

t

2GM

Step 1: To avoid the closing up of the light cones define

dr∗2 =

(
1− 2GM

r

)−2

dr2 ⇒ r∗ = r + 2GM ln
( r

2GM
− 1
)

= tortoise coordinate

so that
dt

dr∗
= ±1 ⇒ t = ± r∗ + const .
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⇒ The light cones are then like in Minkowski:

r∗

t

r = 2GM
r∗ = −∞

The metric becomes:

ds2 =

(
1− 2GM

r

)
(−dt2 + dr∗2) + r2dΩ2 .

• No singularity at r = 2GM .

• Still degenerate at r = 2GM .

Step 2: Define null coordinates:

v = t+ r∗ ,

u = t− r∗ .
v = const : ingoing

u = const : outgoing

Replace t by t = v − r∗.
This gives the metric in ingoing Eddington-Finkelstein coordinates

ds2 =

(
1− 2GM

r

)[
− (dv − dr∗)2 + dr∗2

]
+ r2dΩ2

=

(
1− 2GM

r

)[
− dv2 + 2 dv dr∗

]
+ r2dΩ2

= −
(

1− 2GM

r

)
dv2 + 2dvdr + r2dΩ2 .

No degeneracy at r = 2GM :

g = det gµν =


−(1− 2GM/r) 1 0 0

1 0 0 0

0 0 r2 0

0 0 0 r2 sin2 θ

 = −r4 sin2 θ .
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Radial null geodesics satisfy:

v =


t+ r∗ = const (ingoing)

2r∗ + const = 2r + 4GM ln
(

1− r

2GM

)
+ const (outgoing, r > 2GM)

The log is ill-defined for r < 2GM .

Define modified tortoise coordinate:

r∗ = r + 2GM ln

∣∣∣∣ r

2GM
− 1

∣∣∣∣ ⇔ dr∗2 =

(
1− 2GM

r

)−2

dr2

so that

v = 2r + 4GM ln
∣∣∣1− r

2GM

∣∣∣+ const (outgoing, 0 < r <∞)

dv

dr
=


0 (ingoing)

2

(
1− 2GM

r

)−1

(outgoing)

⇒ Light cones now don’t close up at r = 2GM , but they “tilt over”:

v = const

r

v

r = 2GMr = 0
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Finkelstein diagram

Define v = t+ r∗ = t∗ + r, so that t∗ = v − r.
Geodesics in the t∗–r plane are:

r

t∗ = v − r

2GM

← outgoing

← ingoing

⇒ Inside the horizon, outgoing null rays don’t go out!
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White hole

Repeat the exercise with the outgoing Eddington-Finkelstein coordinates.

Replace t by t = u+ r∗.

The metric becomes

ds2 = −
(

1− 2GM

r

)
du2 − 2dudr + r2dΩ2 .

The Finkelstein diagram is

r

t∗ = u + r

2GM

← outgoing

← ingoing

⇒ Inside the horizon, ingoing null rays don’t go it!

⇒ Outgoing null rays get expelled from inside the horizon.

This is a white hole (= time reverse of a black hole).
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Kruskal coordinates

We have found two ways to extend the r ∈ (2GM,∞) coordinates.

In Rindler space, these correspond to

X

T

X

T

ingoing coordinates outgoing coordinates

Let’s make this explicit by finding coordinates which cover the entire spacetime.

Step 3: Use both null coordinates v = t+ r∗ and u = t− r∗.
This gives

ds2 =

(
1− 2GM

r

)[
− dt2 + dr∗2

]
+ r2dΩ2

=

(
1− 2GM

r

)[
− d(t+ r∗)d(t− r∗)

]
+ r2dΩ2

= −
(

1− 2GM

r

)
dudv + r2dΩ2 .

⇒ Still degenerate at r = 2GM .

58



Step 4: Define the Kruskal coordinates:

U = −e−u/4GM ,

V = ev/4GM .

UV = −er∗/2GM = −
( r

2GM
− 1
)
er/2GM ,

U

V
= −e−t/2GM .

The metric becomes

ds2 = −
(

1− 2GM

r

)
dudv + r2dΩ2

= −
(

1− 2GM

r

)
(4GM)2

−UV dUdV + r2dΩ2

= −
(

1− 2GM

r

)
(4GM)2

( r

2GM
− 1
)−1

e−r/2GMdUdV + r2dΩ2

= −32(GM)3

r
e−r/2GMdUdV + r2dΩ2 .

⇒ Nothing special at r = 2GM !

⇒ Extend the Schwarzschild coordinates (U < 0 and V > 0) to U, V ∈ R.

We can also define

T =
1

2
(V + U) ,

X =
1

2
(V − U) ,

T 2 −X2 =
(

1− r

2GM

)
er/2GM ,

T

X
= tanh

(
t

4GM

)
,

and write the metric as

ds2 =
32(GM)3

r
e−r/2GM(−dT 2 + dX2) + r2dΩ2 .
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Kruskal diagram

This is the Schwarzschild spacetime in Kruskal coordinates:

X

T

r
=

2G
M

t =
+
∞

r
=

2G
M

t = −∞

← t = const

← r = const

VU
r = 0

r = 0

I

II

III

IV

• Region I: Outside the horizon

• Region II: Black hole

• Region III: White horizon

• Region IV: Mirror black hole

Regions I and IV are spacelike separated and connected by a wormhole.
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6.2 Charged Black Holes

A charged black hole is described by the Reissner-Nordstrom solution

ds2 = −
(

1− 2GM

r
+
Q2

r2

)
dt2 +

(
1− 2GM

r
+
Q2

r2

)−1

dr2 + r2dΩ2 .

Now, there can be two horizons:

1− 2GM

r
+
Q2

r2
= 0 ⇒ r± = GM ±

√
G2M 2 −Q2 .

• For |Q| → 0, we get r− → 0 and r+ → 2GM .

• For |Q| > GM : no horizon; r = 0 is a naked singularity.

• For |Q| < GM : two horizons

• For |Q| = GM : we get an extremal black hole

ds2 = −
(

1− GM

r

)2

dt2 +

(
1− GM

r

)−2

dr2 + r2dΩ2 .

For r = GM + η, with η � GM , this becomes

ds2 = − η2

(GM)2
dt2 +

(GM)2

η2
dη2︸ ︷︷ ︸

AdS2

+ (GM)2dΩ2︸ ︷︷ ︸
S2

.

⇒ Beginning of AdS/CFT .
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6.3 Rotating Black Holes

A rotating black hole is described by the Kerr solution

ds2 = −∆

ρ2
(dt− a sin2 θ dφ)2 +

sin2 θ

ρ2

[
(r2 + a2)dφ− adt

]2
+
ρ2

∆
dr2 + ρ2dθ2 ,

where a ≡ J/M is the angular momentum per unit mass and

∆ ≡ r2 − 2GMr + a2 ,

ρ2 ≡ r2 + a2 cos2 θ .

Again, there can be two horizons:

∆(r) = r2 − 2GMr + a2 = 0 ⇒ r± = GM ±
√
G2M 2 − a2 .

• a > GM : no horizon; r = 0 is a naked singularity.

• a = GM : extremal black hole

• a < GM : real world black holes

Something interesting happens just outside the outer horizon:

K =
∂

∂t
⇒ gµνK

µKν = gtt = − 1

ρ2
(r2 + 2GMr + a2 cos2 θ)

becomes spacelike at r < GM +
√
G2M 2 − a2 cos2 θ (⇒ ergoregion).

ergoregion

outer horizon

• Particles can have E = −KµP
µ < 0 in the ergoregion.

• Extract mass and angular momentum through the Penrose process.
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Chapter 7.

COSMOLOGY

One of the most important applications of general relativity is to cosmology. Our goal in

this chapter is to derive, and then solve, the equations governing the evolution of the entire

universe. This may seem like a daunting task. Fortunately, the coarse-grained properties of

the universe are remarkably simple.

7.1 Robertson-Walker Metric

Averaged over large scales, the universe is

• homogeneous (the same at every place)

• isotropic (the same in all directions)

The spacetime is a foliation of homogeneous and isotropic slices:

flat spherical hyperbolic

The line element is

ds2 = −dt2 + a2(t)

scale factor

× γijdx
idxj

symmetric 3-space

What is the metric on the 3d slices?

Assuming isotropy about a fixed point r = 0, the spatial metric is

d`2 ≡ γijdx
idxj = e2α(r)dr2 + r2dΩ2 .

The corresponding scalar curvature is

R(3)[γij] =
2

r2

[
1− d

dr

(
re−2α(r)

)]
= 6K = const ← homogeneity

where K = 0 (flat), K > 0 (spherical) and K < 0 (hyperbolic).
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Integrating this expression, we get

e2α(r) =
1

1−Kr2 + br−1
.

For the limit r → 0 to be well-defined, we must set b = 0.

The spatial metric then is

d`2 =
dr2

1−Kr2
+ r2dΩ2 ,

and the spacetime metric becomes

ds2 = −dt2 + a2(t)

[
dr2

1−Kr2
+ r2dΩ2

]
Robertson-Walker metric

7.2 Friedmann Equation

The evolution of scale factor follows from the Einstein equation:

Gµν[a(t)] = 8πGTµν

↑ ↑
curvature perfect fluid

We start on the left-hand side:

• Christoffel symbols

Γµ00 = Γ0
0β = 0 ,

Γ0
ij = aȧγij ,

Γi0j =
ȧ

a
δij ,

Γijk =
1

2
γil(∂jγkl + ∂kγjl − ∂lγjk) .

• Ricci tensor

R00 = −3
ä

a
,

R0i = 0 ,

Rij =

[
ä

a
+ 2

(
ȧ

a

)2

+ 2
K

a2

]
gij .
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• Ricci scalar

R = gµνRµν

= −R00 +
1

a2
Rii = 6

[
ä

a
+

(
ȧ

a

)2

+
K

a2

]
.

• Einstein tensor

G00 = 3

[(
ȧ

a

)2

+
K

a2

]
,

Gij = −
[

2
ä

a
+

(
ȧ

a

)2

+
K

a2

]
gij .

On large scales, the energy-momentum tensor is that of a perfect fluid:

Tµν = (ρ+ P )UµUν + Pgµν .

In the rest frame, this becomes

T00 = ρ ,

Tij = Pgij .

• The temporal component of the Einstein equation then is

G00 = 8πGT00 ⇒
(
ȧ

a

)2

=
8πG

3
ρ− K

a2

Friedmann
equation

• The spatial components imply

Gij = 8πGTij ⇒ 2
ä

a
+

(
ȧ

a

)2

+
K

a2
= −8πGP

⇒ ä

a
= −4πG

3
(ρ+ 3P )

Raychaudhuri
equation
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The evolution of the fluid is determined by ∇µT
µν = 0.

The ν = 0 component leads to

0 = ∇µT
µ0 = ∂µT

µ0 + ΓµµλT
λ0 + Γ0

µλT
µλ

= ∂0T
00 + Γµµ0T

00 + Γ0
µλT

µλ (using T i0 = 0)

= ∂0T
00 + Γii0T

00 + Γ0
ijT

ij (using Γ0
0λ = 0)

= ρ̇+ 3
ȧ

a
(ρ+ P ) ,

so that

ρ̇ = −3
ȧ

a
(ρ+ P )

continuity
equation

The fluids of interest in cosmology have a constant equation of state:

w =
P

ρ
=



0 matter

1

3
radiation

−1 dark energy

The continuity equation then implies

ρ̇

ρ
= −3(1 + w) ⇒ ρ =

ρ0

a3(1+w)
∝


a−3 matter

a−4 radiation

a0 dark energy

When the universe is dominated by a single component, the Friedmann equa-

tion gives

(
ȧ

a

)2

∝ 1

a3(1+w)
⇒ a(t) =

(
t

t0

)2/3(1+w)

∝


t2/3 matter

t1/2 radiation

eH0t dark energy
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7.3 Our Universe

The universe has multiple components:

photons (γ) neutrinos (ν)︸ ︷︷ ︸
radiation (r)

baryons (b)︷ ︸︸ ︷
electrons (e) protons (p) cold dark matter (c)︸ ︷︷ ︸

matter (m)

.

The evolution is dominated first by radiation, then matter, then dark energy:

10−10 10−8 10−6 10−4 10−2 1 102 104

10−5

1

105

1010

1015

1020

1025

1030

C
M

B

B
B

N

ρr

ρm

ρΛ

a(t)

ρ
(a

)

futurepast

radiation era matter era dark energy era

The Friedmann equation is

H2 =
8πG

3
(ρr,0a

−4 + ρm,0a
−3 + ρΛ,0)−

K

a2
,

where H ≡ ȧ/a and a(t0) ≡ 1.

• The expansion rate today is H0 = 70 km/s/Mpc, where Mpc = 3× 1022 m.

• A flat universe (K = 0) has

ρcrit,0 =
3H2

0

8πG
= 8.9× 10−30 grams cm−3

= 1.3× 1011M�Mpc−3

= 5.1× 10−6 protons cm−3 .
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• The Friedmann equation becomes

H2

H2
0

= Ωra
−4 + Ωma

−3 + ΩKa
−2 + ΩΛ ,

where Ωi ≡ ρi,0/ρcrit,0 (for i = r,m,Λ) and ΩK ≡ −K.

• The measured cosmological parameters are:

Ωr = 8.99× 10−5 , Ωm = 0.32 , ΩΛ = 0.68 , |ΩK | < 0.005 ,

with Ωb = 0.05 and Ωc = 0.27 .

There are many open questions:

• What is dark matter?

• What is dark energy?

• What created the matter-antimatter asymmetry?

• What created the initial density fluctuations?

• ...

See Ben Freivogel’s Cosmology course.
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Chapter 8.

GRAVITATIONAL WAVES

Just like the Maxwell equations allow for electromagnetic wave solutions, the Einstein equations

admit gravitational waves as solutions. Although these gravitational waves were predicted over

a century ago, they we detected only very recently. In this chapter, I will give a brief sketch

of the physics of gravitational waves.

8.1 Linearized Einstein Equations

Let gµν = ηµν + hµν, with |hµν| � 1.

• The linearized Christoffel symbols are

Γσµν =
1

2
ησλ(∂µhνλ + ∂νhµλ − ∂λhµν) .

• The Riemann tensor is

Rσ
µρν = ∂ρΓ

σ
µν − ∂νΓσµρ + ΓλµνΓ

σ
ρλ − ΓλρµΓσνλ

= ∂ρΓ
σ
µν − ∂νΓσµρ

=
1

2
ησλ(∂ρ∂µhνλ − ∂ρ∂λhµν − ∂ν∂µhρλ + ∂ν∂λhµρ) .

• The Ricci tensor is

Rµν =
1

2
(∂λ∂µhνλ −�hµν + ∂λ∂νhµλ − ∂µ∂νh) ,

with h ≡ hµµ and � = ∂µ∂µ.

• The Ricci scalar is

R = ∂µ∂νhµν −�h .

• Finally, the linearized Einstein tensor is

Gµν =
1

2

[
∂λ∂µhνλ + ∂λ∂νhµλ −�hµν − ∂µ∂νh− (∂ρ∂σhρσ −�h)ηµν

]
= 8πGTµν
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Gauge symmetry

Recall that xµ → xµ − ξµ(x) leads to δgµν = ∇µξν +∇νξµ .

This implies

hµν → hµν + ∂µξν + ∂νξµ Similar to: Aµ → Aµ + ∂µα

Like Fµν = ∂µAν − ∂νAµ, the linearized Rσ
µρν is gauge invariant.

Gauge fixing

It is often useful to pick a gauge:

Gauge: Lorenz gauge: de Donder gauge:

∂µAµ = 0 ∂µhµν =
1

2
∂νh

Field equation: �Aν = Jν �

(
hµν −

1

2
h ηµν

)
= −16πGTµν.

Hence, we have

�h̄µν = −16πGTµν , where h̄µν ≡ hµν −
1

2
h ηµν .

Newtonian limit

Using � = −∂2
t +∇2 → ∇2, and T00 = ρ(x), T0i = Tij = 0, we get

∇2h̄00 = −16πGρ(x) ,

∇2h̄0i = 0 ,

∇2h̄ij = 0 .

This reproduces the Poisson equation, if h̄00 = −4Φ(x) and h̄0i = hij = 0.

Using h̄ = +4Φ(x), we get
h00 = −2Φ ,

h0i = 0 ,

hij = −2Φδij ,

and hence

ds2 = −(1 + 2Φ)dt2 + (1− 2Φ)dx2 .
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8.2 Gravitational Waves

Gravitational waves are solutions of the vacuum equation:

�h̄µν = 0 ⇒ h̄µν = Re(Hµνe
ikλx

λ

) , with kµk
µ = 0 .

⇒ Gravitational waves travel at the speed of light: ω = ±|k|.

Polarizations

Naively, the polarization matrix Hµν has 10 components.

However, only 2 are independent.

Electromagnetism:

• Aµ has 4 components.

• Lorenz gauge, ∂µAµ = 0, reduces this to 4− 1 = 3.

• Residual gauge symmetry,

Aµ → Aµ + ∂µα ,

∂µAµ → ∂µAµ + �α ,

leaves 3− 1 = 2.

Linearized gravity:

• hµν has 10 components.

• de Donder gauge,

∂µh̄µν = 0 ⇒ kµHµν = 0 ,

reduces this to 10− 4 = 6.

• Residual gauge symmetry,

h̄µν → h̄µν + ∂µξν + ∂νξµ − ∂σξσηµν ,
∂µh̄µν → ∂µh̄µν + �ξν ,

leaves 6− 4 = 2.

The residual gauge transformation, ξµ = λµe
ikλx

λ

(⇐ �ξµ = 0),

relates equivalent polarizations

Hµν → Hµν + i(kµλν + kνλµ − kσλσηµν) .
This allows us to set

H0ν = Hµ
µ = 0 (transverse, traceless) .
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Consider a wave propagating in the z-direction: kµ = (ω, 0, 0, ω).

• De Donder: kµHµν = 0 =⇒ H0ν +H3ν = 0.

• Transverse, traceless:

Hµν =


0 0 0 0

0 H+ H× 0

0 H× −H+ 0

0 0 0 0

 .

Stretching space

Consider a ring of particles in the x-y plane:

Recall the geodesic deviation equation:

D2Bµ

Dτ 2
= −Rµ

νρσU
νUσBρ ,

Assume Uµ = (1, 0, 0, 0) (particles at rest) in the absence of the GW:

d2Bµ

dt2
= −Rµ

0ρ0B
ρ =

1

2

d2hµρ
dt2

Bρ .

Consider the + polarization (i.e. H× = 0). Let z = 0.

We then have
dB1

dt2
= −ω

2

2
H+e

iωtB1 ,

dB2

dt2
= +

ω2

2
H+e

iωtB2 ,

Perturbatively in small H+, we get

B1(t) = B1(0)

(
1 +

1

2
H+e

iωt + · · ·
)
,

B2(t) = B2(0)

(
1− 1

2
H+e

iωt + · · ·
)
,
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which implies

y

x

A similar analysis for the × polarization leads to

y

x

The stretching and squeezing of space is used in the detection of GWs:

δL

L
≈ H+,×

2
∼ 10−21 ⇒ δL ≈ 10−18 m (sick!)
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8.3 Creating Waves

To understand the production of gravitational waves, we have to consider

�h̄µν = −16πGTµν .

y

Tµν(tr,y)

h̄µν(t,x)

d

The solution is

h̄µν(t,x) = 4G

∫
Σ

d3y
Tµν(tr,y)

|x− y| ,

with “retarded time” tr = t− |x− y|.

At leading order in the multipole expansion (d/r � 1), this implies

h̄ij(t,x) ≈ 4G

r

∫
Σ

d3y Tij(t− r,y) ,

where r ≡ |x|. [Other components, h̄00 and h̄0i are related by gauge conditions.]

Ex: Using ∂µT
µν = 0, show that

h̄ij(t,x) =
2G

r

d2Iij
dt2

, where Iij ≡
∫

Σ

d3y T 00 yiyj .

quadrupole moment

Hint: Note that T ij = ∂k(T
ikyj)− (∂kT

ik)yj → ∂0T
0iyj.

Cf. electrodynamics: radiation is sourced by a time-dependent dipole.

⇔ No dipole for gravity (because no negative gravitational charge).
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8.4 September 14, 2015

• A new era of science was initiated by the detection of GWs.

• All observed events are in perfect agreement with the predictions of GR.
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Appendix to Chapter 6.

PENROSE DIAGRAMS

A black hole is defined as the region of space from which light cannot escape to infinity. The

boundary of that region is the event horizon. In the Kruskal diagram, infinity is still a large

distance away. A more precise way to capture the black geometry maps the points at infinity

to a finite distance. This leads to the famous Penrose diagram.

Two-Dimensional Minkowski

Consider

ds2 = −dt2 + dx2 v=t+x−−−−−−→
u=t−x

−dudv
v=tan ṽ−−−−−−→
u=tan ũ

− 1

cos2 ũ cos2 ṽ
dũdṽ .

The last transformation maps u, v ∈ (−∞,∞) to ũ, ṽ ∈ (−π/2,+π/2).

The overall factor does not affect null geodesics, with ds2 = 0.

The causal structure of ds2 is therefore the same as that of ds̃2 = −dũdṽ.

The Penrose diagram of R1,1 is

I +

I −

I +

I −

i+

i−

i0i0

The boundaries of the diagram are different types of infinity:

• i±: past and future timelike infinity.

• i0: spacelike infinity.

• I ±: past and future null infinity.
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Four-Dimensional Minkowski

Consider

ds2 = −dt2 + dr2 + r2dΩ2 v=t+r−−−−−→
u=t−r

−dudv +
1

4
(u− v)2dΩ2

v=tan ṽ−−−−−→
u=tan ũ

1

cos2 ũ cos2 ṽ

(
−dũdṽ +

sin2(ũ− ṽ)

4
dΩ2

)
.

Because r ≥ 0, we have v ≥ u and hence

− π

2
≤ ũ ≤ ṽ ≤ π

2
.

To draw a two-dimensional diagram, we suppressed the angular coordinates.

The Penrose diagram of R1,3 is

I +

I −

i+

i−

i0

The vertical line corresponds to r = 0 and is not a boundary of the spacetime.

A null geodesic that starts on I − will simply be reflected at the vertical line.
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Schwarzschild Black Hole

We are ready to return to the Schwarzschild geometry:

ds2 = −32(GM)3

r
e−r/2GMdUdV + r2dΩ2 .

Define
U = tan Ũ ,

V = tan Ṽ ,

so that Ũ , Ṽ ∈ (−π/2,+π/2).

The metric becomes

ds2 =
1

cos2 Ũ cos2 Ṽ

[
−32(GM)3

r
e−r/2GMdŨdṼ + r2 cos2 Ũ cos2 Ṽ dΩ2

]
.

The singularity at r = 0 (or UV = 1) now is at

tan Ũ tan Ṽ = 1 ⇒ sin Ũ sin Ṽ − cos Ũ cos Ṽ = 0

cos(Ũ + Ṽ ) = 0 ⇒ Ũ + Ṽ = ±π/2 .

The Penrose diagram of a Schwarzschild black hole is

I +

I −

i+

i−

i0

r = 0

r = 0

H+

H−
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Real Black Holes

The Penrose diagram for real black hole is a hybrid of the diagrams for the

Schwarzschild geometry and that of four-dimensional Minkowski space:

I +

I −

i+

i−

i0

r = 0

r = 0
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